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Over the last two decades, numerous experimental studies have demonstrated that

quantum systems are capable of performing information processing tasks – such as

teleportation, superdense coding, secure communication, and efficient integer fac-

torization – which are widely considered to be impossible with classical systems.

These enhanced capabilities are believed to arise at least partly from the nonlocal

correlations present in entangled quantum systems. While the intrinsic correlations

that underlie interference effects are a general feature of both quantum and classical

systems, the nonlocal correlations of entangled quantum systems have no known

classical counterpart. In addition to being a vital resource for quantum applica-

tions, these nonlocal correlations also pose fundamental questions regarding the

consistency and completeness of the quantum description of physical reality. Cur-

rently, the most important experimental source of entangled systems is parametric

down-conversion – a second-order nonlinear optical process in which a single pho-

ton, referred to as pump, is annihilated in its interaction with a nonlinear medium

to create a pair of entangled photons, referred to as signal and idler. The present

thesis draws on concepts from optical coherence theory and quantum information

theory, and develops tools and techniques for characterizing the correlations of the
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signal-idler photons and their relationship to the intrinsic correlations of the pump

photon in various degrees of freedom.

We first develop an experimental technique that can characterize the angular cor-

relations of photons in a single-shot measurement. The orbital angular momentum

(OAM) basis of photons – by being discrete and infinite-dimensional – provides a

natural platform for preparing and manipulating high-dimensional quantum states.

It is known that high-dimensional quantum states have certain advantages over con-

ventional two-dimensional quantum states in information processing protocols. A

problem that is encountered in several OAM-based protocols is the efficient mea-

surement of photons whose state is described as an incoherent mixture of different

OAM-carrying modes. The angular correlations of such photons are completely char-

acterized by the distribution of the measurement probabilities corresponding to dif-

ferent OAM-carrying modes. This distribution is referred to as the OAM spectrum of

the photons. The existing techniques for measuring the OAM spectrum suffer from

issues such as poor scaling with spectral width, stringent stability requirements, and

too much loss. Furthermore, most techniques measure only a post-selected part of

the true spectrum. We demonstrate that a Mach-Zender interferometer with the

simple-yet-crucial feature of having an odd and even number of mirrors in the two

arms results in the OAM spectrum of the input photons being directly encoded in

the output interferogram. By performing proof-of-concept demonstrations, we show

that the interferometer provides a robust and efficient technique for measuring the

true OAM spectrum of photons in a single-shot acquisition.

Next, we use the single-shot technique to experimentally characterize the angular

correlations of signal-idler photons produced from PDC of a pump photon with zero

OAM. Due to the conservation of OAM in PDC, the two-photon state is entangled

in the OAM basis with measurements on the individual photons always yielding

OAM values with opposite signs such that their sum is zero. The distribution of the

measurement probabilities corresponding to different pairs of OAM values is referred

to as the angular Schmidt spectrum of the two-photon state. The angular Schmidt
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spectrum completely characterizes the angular correlations of the signal-idler pho-

tons. Until now, however, experimental measurements of the Schmidt spectrum

measured only a post-selected part of the true spectrum or required coincidence

detections with stringent alignment conditions or both. As the OAM spectrum of

the individual photons is identical to the angular Schmidt spectrum of two-photon

state, we employ the single-shot technique to experimentally measure the true an-

gular Schmidt spectrum without the need for coincidence detections. Our measure-

ments provide a complete characterization of the angular Schmidt spectrum of the

signal-idler photons from collinear to non-collinear emission regimes with excellent

agreement with theoretical predictions.

We then theoretically investigate the nonlocal correlations of the signal-idler

photons and their relationship to the intrinsic correlations of the pump photon in the

polarization and temporal degrees of freedom. In the polarization degree of freedom,

we demonstrate that the degree of polarization of the pump photon predetermines

the maximum achievable polarization entanglement of two-qubit signal-idler states.

In the temporal degree of freedom, following up on previous studies that considered

specific cases of a continuous-wave pump and a transform-limited pulsed pump, we

theoretically demonstrate that even for a completely general pump, the temporal

correlations of the pump photon are entirely transferred to the signal-idler photons.

We further show that the energy-time entanglement of two-qubit signal-idler states

is bounded by the degree of temporal coherence of the pump photon.

Lastly, we theoretically formulate a basis-invariant coherence measure for quan-

tifying the intrinsic correlations of infinite-dimensional quantum states. For two-

dimensional states, the degree of polarization is a well-established basis-invariant

measure of coherence. Until recently, although some generalizations had been pro-

posed, no analogous measure that possessed all the interpretations of the degree

of polarization had been established for higher-dimensional states. As a result, it

was not possible to characterize the intrinsic correlations of the pump and signal-

idler states in infinite-dimensional representations such as OAM, photon number,
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position, and momentum. Recently, a study demonstrated a measure analogous to

the degree of polarization for finite-dimensional states which also possesses all its

interpretations. Here, we generalize this measure to quantify the intrinsic coherence

of infinite-dimensional states in the OAM, photon number, position and momentum

representations. Our study will now enable a basis-invariant quantification of the

intrinsic correlations of the pump and signal-idler photons in these representations.
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Chapter 1

Background

1.1 Introduction

Correlations are ubiquitous in classical and quantum physics. In classical physics,

the phase correlations of waves lead to the phenomenon of interference. In quantum

physics, the wave-particle duality implies that all physical systems possess intrinsic

correlations which potentially enable them to exhibit interference effects. The fun-

damental property that embodies these intrinsic correlations is known as coherence

[1, 2, 3]. Historically, coherence has been extensively studied through interference

experiments with light, and a rigorous framework called optical coherence theory has

emerged for quantifying the coherence of light fields [2, 3, 4, 5, 6]. While the intrin-

sic correlations that constitute coherence are a general feature of both classical and

quantum systems, there are certain correlations that are observed in quantum sys-

tems but have no known classical counterpart. In particular, multiparticle quantum

systems can possess a curious property known as quantum entanglement [7, 8, 9],

which refers to the inseparability of the physical state of a multiparticle system into

independent physical states for the individual constituent particles. This insepara-

bility results in strong correlations in measurements on the individual particles even

when the particles are causally separated [10, 11]. The presence of such nonlocal cor-

relations raises fundamental questions regarding the consistency and completeness

of quantum theory [8, 9, 12]. In addition, the nonlocal correlations of entangled
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states can be harnessed for several information processing tasks – such as super-

dense coding [13], teleportation [14], and efficient integer factorization [15] – that

are widely believed to be impossible with classical systems [16]. As a result, the

quantification of the correlations of general entangled quantum states is an active

topic of research in quantum information theory with important implications for

fundamental physics and quantum technologies [17, 18, 19, 20].

Presently, the most widely used experimental source of entangled states is para-

metric down-conversion (PDC) - a second-order nonlinear optical process in which

a single photon, referred to as pump, gets annihilated in its interaction with a non-

linear medium to produce a pair of photons, referred to as signal and idler [21]. The

constraints of energy, momentum, and orbital angular momentum (OAM) conser-

vation render the signal and idler photons entangled in various degrees of freedom.

It is fundamentally interesting to explore how the intrinsic correlations of the pump

photon get transferred through the process to eventually manifest as the nonlocal

correlations of the entangled signal-idler photons [22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32]. Moreover, the characterization and quantification of the correlations of

these photons is also important for harnessing them effectively in quantum protocols

[33, 34, 35, 36, 37]. In this thesis, we present experimental and theoretical studies on

the characterization and quantification of the correlations of the signal-idler photons

produced from PDC, and their relationship to the coherence properties of the pump

photon in the angular, temporal, and polarization degrees of freedom.

This chapter is organized as follows: In Sections 1.2 and 1.3, we present a basic

introduction to optical coherence in the context of the Michelson interference ex-

periment, and derive the Wiener-Khintchine theorem for stationary light fields. In

Sections 1.4, 1.5, and 1.6, we present a basic introduction to quantum entanglement,

its implications for fundamental physics, and its role in quantum technologies. In

Section 1.7, we describe the Schmidt decomposition for a bipartite pure quantum

state. In Section 1.8, we describe some of the present coherence measures and en-

tanglement measures, and discuss their limitations. In Sections 1.9 and 1.10, we
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present a brief introduction to nonlinear optics and the process of PDC. In Section

1.11, we discuss the existing studies on the correlations of the signal-idler photons

and their relationship to the coherence of the pump. In Section 1.12, we summarize

and present an outline of the thesis.

1.2 Optical coherence

We present a brief introduction to the concept of coherence by analyzing the Michel-

son interference experiment in the framework of optical coherence theory [3]. We

will first analyze the experiment in the formalism of classical coherence theory pi-

oneered by Wolf [2], following which we will present the quantum treatment in the

theory of quantum optical coherence due to Glauber and Sudarshan [4, 5, 6].

Consider a classical light field whose electric field amplitude at spatial location

r and time t is denoted as E(r, t). In general, the field can be modeled as a random

process (see Chapter 2 of Ref. [3] for an introduction to random processes). As

depicted in Figure 1.1, the light field is incident onto a beam-splitter, where it is

split into two paths with traversal times τ1 and τ2, and is then recombined before it

is measured at detector DA. The field EA(r, t) at the detector is given by

EA(r, t) = k1E(r, t− τ1) + k2E(r, t− τ2), (1.1)

where k1 and k2 are constants related to the splitting ratio of the beam-splitter. The

detected intensity IA(r, t) = ⟨E∗
A(r, t)EA(r, t)⟩ is given by

IA(r, t) = |k1|2⟨E∗(r, t− τ1)E(r, t− τ1)⟩+ |k2|2⟨E∗(r, t− τ2)E(r, t− τ2)⟩

+ k∗1k2⟨E∗(r, t− τ1)E(r, t− τ2)⟩+ c.c, (1.2)

where ⟨· · · ⟩ represents an ensemble-average over many realizations of the field. The

two-time cross-correlation function Γ(t1, t2) of the input field is defined as Γ(t1, t2) ≡

⟨E∗(r, t1)E(r, t2)⟩. The spatial co-ordinate argument has been suppressed in Γ(t1, t2)
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Figure 1.1: A classical light field with electric field amplitude E(t) is split into
two paths with source-to-detector traversal times τ1 and τ2, and is recombined and
measured at detector DA. The electric fields from the two paths superpose and lead
to interference.

as we are focusing on the temporal coherence properties of the field. The measured

intensity IA(r, t) of Equation (1.2) then takes the form

IA(r, t) = |k1|2Γ(t−τ1, t−τ1)+ |k2|2Γ(t−τ2, t−τ2)+k∗1k2Γ(t−τ1, t−τ2)+c.c. (1.3)

This is the general expression for the intensity in a Michelson interference experi-

ment. The degree of temporal coherence γ(t− τ1, t− τ2) is defined as

γ(t− τ1, t− τ2) =
Γ(t− τ1, t− τ2)√

Γ(t− τ1, t− τ1)Γ(t− τ2, t− τ2)
. (1.4)

Using Cauchy-Schwartz inequality, one can show that 0 ≤ |γ(t− τ1, t− τ2)| ≤ 1. We

denote γ(t− τ1, t− τ2) = |γ(t− τ1, t− τ2)|eiarg(γ). Equation (1.3) can be written as

IA(t) = |k1|2I(t− τ1) + |k2|2I(t− τ2)

+ 2|k1||k2|
√
I(t− τ1)I(t− τ2)|γ(t− τ1, t− τ2)| cos {arg(γ) + ϕ} , (1.5)

where we have defined ϕ ≡ arg{k∗1k2} and I(r, t) ≡ Γ(t, t). The first two terms

correspond to the individual intensities from the two arms of the interferometer.

The last term depends on both τ1 and τ2, and is responsible for interference. The

coherence of the light field can be quantified in terms of the contrast or visibility V
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of the interference fringes, which can be computed as

V =
Imax − Imin

Imax + Imin

. (1.6)

Using equations (1.5) and (1.6), we obtain

V =
2|k1||k2|

√
I(t− τ1)I(t− τ2)

|k1|2I(t− τ1) + |k2|2I(t− τ2)
|γ(t− τ1, t− τ2)|. (1.7)

We find that the visibility of the interference is directly proportional to the degree

of temporal coherence γ(t− τ1, t− τ2) of the superposing fields. For stationary fields

such as a continuous-wave laser, when the time difference ∆τ = τ2 − τ1 is much

smaller than the coherence time τcoh of the laser, γ(t − τ1, t − τ2) is close to unity

which leads to interference with high contrast. In this situation, the fields from

the two paths are highly coherent with respect to one another. When ∆τ is much

larger than τcoh, the value of γ(t − τ1, t − τ2) is close to zero, which results in the

interference getting washed out. In this situation, one says that the fields from the

two arms are incoherent with respect to one another. Thus, the degree of temporal

coherence, which is the normalized cross-correlation function of the field, provides a

way of quantifying the coherence of a light field. In Chapter 5, we will quantify the

temporal coherence of the pump using its degree of temporal coherence.

In the quantum interpretation of the experiment, the interference is understood

in terms of Dirac’s famous statement, ”... a single photon interferes with itself” [38].

As depicted in Figure 1.2, each photon of the input field has two alternative paths

that it can take before it gets detected at DA. When the two alternatives are in-

distinguishable, there is a quantum interference between the probability amplitudes

corresponding to the alternatives. In terms of coherence, one says that interference

occurs when the two alternatives are coherent with one another. We shall undertake

the quantum analysis of the Michelson experiment, but before that we will briefly

review the prerequisite concept of analytic field operators.

In the quantum theory of optical coherence [4], the quantized nature of the
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Figure 1.2: A quantum light field, described by the state |ψ⟩, is split into two
paths with source-to-detector light traversal times τ1 and τ2, and is recombined and
measured at detector DA. Each photon has two alternative paths 1 and 2 that it
can take before getting detected at DA. The probability amplitudes corresponding
to the two paths superpose and lead to interference.

electromagnetic field is taken into account by promoting the electric field amplitude

E(r, t) to a Hermitian field operator Ê(r, t). This field operator can be written as

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t)

=
∑
k

i

[
ℏωk

2ϵ0L3

] 1
2

â(k, t)ei(k·r−ωkt) − i

[
ℏωk

2ϵ0L3

] 1
2

â†(k, t)e−i(k·r−ωkt), (1.8)

where Ê(+)(r, t) and Ê(−)(r, t) are the positive and negative complex analytic field

operators, respectively. The action of Ê(+)(r, t) is to absorb a photon at (r, t),

whereas the action of Ê(−)(r, t) is to emit a photon at (r, t). These operators have

then been expanded in the plane-wave mode annihilation and creation operators,

â(k, t) and â†(k, t), respectively. The wave-vector and frequency of the plane-wave

modes are denoted as k and ωk, respectively, and the quantity L3 refers to the

quantization volume.

We now present the quantum treatment for the experiment. Consider an input

light field, described by the state |ψ⟩, that is incident into the beamsplitter of the

Michelson setup depicted in Figure 1.2. The positive analytic field operator Ê
(+)
A (r, t)

at detector DA is given by

Ê
(+)
A (r, t) = k1E

(+)(r, t− τ1) + k2E
(+)(r, t− τ2). (1.9)
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Here, E(+)(r, t − τ1) and E(+)(r, t − τ2) are the positive analytic field operators

corresponding to the alternatives 1 and 2, respectively. The probability per unit

time pA(t) that a photon is detected at DA is calculated as

pA(t) = ⟨⟨ψ|E(−)
A (r, t)E

(+)
A (r, t)|ψ⟩⟩e

= |k1|2⟨⟨ψ|E(−)(r, t− τ1)E
(+)(r, t− τ1)|ψ⟩⟩e

+ |k2|2⟨⟨ψ|E(−)(r, t− τ2)E
(+)(r, t− τ2)|ψ⟩⟩e

+ k∗1k2⟨⟨ψ|E(−)(r, t− τ1)E
(+)(r, t− τ1)|ψ⟩⟩e + c.c,

where ⟨· · · ⟩e represents an ensemble average over many realizations of the field. The

first two terms represent the detection probabilities per unit time corresponding to

the individual alternatives. The temporal autocorrelation function G(1)(t1, t2) is now

defined as G(1)(t1, t2) ≡ ⟨⟨ψ|E(−)(r, t1)E
(+)(r, t2)|ψ⟩⟩e. The expression for pA(t) then

takes the form

pA(t) = |k1|2G(1)(t− τ1, t− τ1) + |k2|2G(1)(t− τ2, t− τ2)

+ k∗1k2G
(1)(t− τ1, t− τ2) + c.c (1.10)

The above equation expresses the quantum description of Michelson’s interference,

and is analogous to Equation (1.3) which expresses the classical description. As

in the classical treatment, the coherence of the light field can again be quantified

in terms of the cross-correlation function of the field. The difference is that the

cross-correlation function G(1)(t− τ1, t− τ2) now involves normally-ordered field op-

erators, instead of field amplitudes. However, for most conventional light fields such

as thermal fields, continuous-wave lasers among others, the classical and quantum

treatments of Michelson interference lead to equivalent predictions [6].

The Michelson’s interference involves the detection of one photon at a time,

and is therefore an example of one-photon interference. In one-photon interference,

the probability amplitudes for the alternatives available to a single photon super-
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pose and lead to interference. As a result, the probability per unit time that a

photon is detected exhibits interference fringes, and the visibility of these is quan-

tified in terms of a first-order cross-correlation function such as G(1)(r1, t1; r2, t2) ≡

⟨⟨ψ|E(−)(r1, t1)E
(+)(r2, t2)|ψ⟩⟩e that has second powers of field. In contrast, there

are interference experiments such as the ones by Hanbury Brown-Twiss [39, 40],

Hong-Ou-Mandel [41], Franson [42] among others which involve coincidence detec-

tions of two photons at a time, and are therefore referred to as two-photon inter-

ference. In such situations, the probability amplitudes for the alternatives available

to a two-photon system superpose and lead to interference. The interference fringes

are then observed in the probability per unit (time)2 that the two-photon is detected

at a pair of detectors. The visibility of this interference can be quantified in terms

of a second-order cross-correlation function such as G(2)(r1, t1, r2, t2; r3, t3, r4, t4) ≡

⟨⟨ψ|E(−)(r1, t1)E
(−)(r2, t2)E

(+)(r3, t3)E
(+)(r4, t4)|ψ⟩⟩e that has fourth powers of the

field. In Chapter 5, we will use a second-order correlation function to quantify the

temporal coherence of the signal-idler two-photon state produced from PDC.

1.3 Wiener-Khintchine theorem

We now derive the Wiener-Khintchine relation for temporally stationary classical

light fields. Our treatment closely follows the analysis by Mandel and Wolf (see

Section 2.4.1 of Ref. [3]). Consider a classical light field whose electric field is

denoted as E(r, t). If the Fourier transform of E(r, t) with respect to the time

variable exists, then we can write

E(r, t) =

∫ +∞

−∞
Ẽ(r, ω)e−iωt dω, (1.11a)

Ẽ(r, ω) =
1

2π

∫ +∞

−∞
E(r, t)eiωt dt. (1.11b)

However, there are certain classes of fields (for eg. stationary fields) which are not

absolutely integrable, i.e, the condition
∫ +∞
−∞ |E(r, t)|dt < ∞ is not satisfied. For

such fields, the Fourier transform does not exist. Although this problem can be rigor-
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ously addressed using Wiener’s theory of generalized harmonic analysis [43], for our

purposes it is sufficient that the cross-correlation function Γ(t1, t2) = ⟨E∗(t1)E(t2)⟩

be absolutely integrable. Here ⟨· · · ⟩ indicates an ensemble average over infinitely-

many realizations of the field. Using Equations (1.11) heuristically, it follows that

Γ(t1, t2) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
W (ω1, ω2) e

i(ω1t1−ω2t2) dω1 dω2, (1.12)

where the cross-spectral density is defined as W (ω1, ω2) ≡ ⟨Ẽ∗(r, ω1)Ẽ(r, ω2)⟩. The

above equation (1.12), which relates the cross-correlation function to the cross-

spectral density by a two-dimensional Fourier transform, is referred to as the gen-

eralized Wiener-Khintchine theorem.

Now let us assume that the field E(r, t) is stationary in time (at least in the

wide sense) [3]. This implies that its mean intensity Γ(t, t) is time-independent,

and that the cross-correlation function Γ(t1, t2) depends only on the time difference

τ = t1 − t2, i.e, Γ(t1, t2) = Γ(t1 − t2) = Γ(τ). The autocorrelation function Γ(τ) is

also referred to as the temporal coherence function. This condition when subsituted

in Equation (1.12) implies that the cross-spectral density W (ω1, ω2) for stationary

fields takes the form

W (ω1, ω2) = S(ω1)δ(ω1 − ω2), (1.13)

where S(ω) is called the spectral density (or frequency spectrum) of the field. It

refers to the weightage of the different monochromatic frequency components of the

field. The Dirac delta condition implies that all the frequency components are com-

pletely uncorrelated with one another. An example of a field that is approximately

stationary is the field from a continuous-wave laser.

Now we note that by substituting Equation (1.13) in Equation (1.12), it follows
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that

Γ(τ) =

∫ +∞

−∞
S(ω)e−iωτ dω, (1.14a)

S(ω) =
1

2π

∫ +∞

−∞
Γ(τ)eiωτ dτ. (1.14b)

The above relations constitute the Wiener-Khintchine theorem, which states that

the spectral density S(ω) and the autocorrelation function Γ(τ) of a stationary field

are related to each other by a one-dimensional Fourier transform. In other words,

the functions S(ω) and Γ(τ) are informationally equivalent. The Wiener-Khintchine

theorem plays a crucial role in some techniques in frequency spectroscopy where the

frequency spectral density S(ω) of an unknown field is measured by measuring the

autocorrelation function Γ(τ), and then performing an inverse Fourier transform.

In Chapter 2, we will use an analog of the Wiener-Khintchine theorem for

the OAM-angle degree of freedom. Like time and frequency, the OAM and an-

gle variables also form a Fourier-conjugate pair [44, 45]. As a result, for a field

whose different OAM components are completely uncorrelated, the corresponding

OAM spectrum is related to the angular coherence function by a Fourier transform

[46, 37, 47, 32]. In Chapter 2, we will describe an interferometric technique that

measures the OAM spectrum of such a field by measuring its angular coherence

function in a single-shot acquisition.

1.4 Quantum entanglement

Quantum entanglement is a physical phenomenon that arises when the principle

of linear superposition is applied to multipartite quantum systems. The joint pure

state |ψ⟩AB of a composite system AB is said to be entangled if the composite state

is not separable as a product of states |ϕ⟩A and |χ⟩B corresponding to the constituent

systems A and B [16], i.e,

|ψ⟩AB ̸= |ϕ⟩A ⊗ |χ⟩B, (1.15)
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The most dramatic consequence of this inseparability is the observation of nonlocal

correlations in measurements on systems A and B even when they are spatially

separated with no possibility of any causal influence. We shall now briefly describe

these nonlocal correlations in the context of a polarization-entangled two-photon

system.

Consider a system of two photons A and B whose horizontal and vertical po-

larization basis vectors are labeled as {|H⟩A, |V ⟩A} and {|H⟩B, |V ⟩B}, respectively.

According to quantum theory, the Hilbert space of the composite two-photon sys-

tem AB is the tensor product of the individual Hilbert spaces of the constituent

photons A and B. Therefore, the polarization Hilbert space of AB is spanned by

the set of basis vectors {|H⟩A|H⟩B, |H⟩A|V ⟩B, |V ⟩A|H⟩B, |V ⟩A|V ⟩B}. Now let the

two photons A and B be described by a two-photon state of the form

|ψ⟩AB =
1√
2
(|H⟩A|V ⟩B − |V ⟩A|H⟩B) . (1.16)

The above state |ψ⟩AB cannot be represented as a direct product of states for photons

A and B, and is therefore an entangled state.

If we now perform polarization measurements on the individual photons A and

B at spatially distant locations, we find that whenever photon A is measured to

be horizontally-polarized, the photon B is measured to be vertically-polarized, and

vice-versa. In other words, the polarization states of the two photons are perfectly

anti-correlated. However, the presence of such correlations only in a single basis is

not sufficient to ascertain entanglement. The quintessential feature of entanglement

is that such correlations are observed no matter in what basis the measurements

are performed. Therefore, even if we had chosen to measure the polarizations of A

and B in the left-circular and right-circular polarization basis, or the +45◦ and −45◦

polarization basis, or any other orthonormal basis, we would have still found that the

polarization states of photons A and B are perfectly anti-correlated. Moreover, these

correlations are observed even if the photons are causally separated in spacetime

with no possibility of a physical interaction. Thus, the simultaneous manifestation
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of nonlocal correlations in measurement outcomes in different bases is the hallmark

of quantum entanglement; and this phenomenon has no counterpart in classical

physics. Schrodinger had already recognized the significance of entanglement in his

1935 paper [7], where he referred to entanglement as “... not one but rather the

characteristic trait of quantum mechanics, the one that enforces its entire departure

from classical lines of thought.”

1.5 Fundamental implications of entanglement

The fundamental implications of the nonlocal correlations of entangled quantum

states were first investigated by Einstein, Podolsky, and Rosen (EPR) in a seminal

1935 paper [8]. The authors stated that any physical theory must satisfy the princi-

ple of local realism, which comprises of two conditions: (i) locality, which demands

that a measurement on one particle cannot instantaneously influence the state of

another spatially separated particle, and (ii) realism, which states that if a physical

property of a system can be predicted with certainty without measurement, then it

is an element of reality of the particle. The authors showed that the existence of

entangled states violates local realism, and therefore argued that quantum theory

cannot be regarded as a complete physical description of nature.

In the context of our polarization-entangled two-photon state |ψ⟩AB of Equa-

tion (1.16), the EPR argument can be stated as follows: If the polarization of photon

A is measured in the horizontal-vertical basis with the outcome being horizontal,

then photon B collapses into vertical polarization instantaneously. But if photon

A had been measured in the left-right circular basis with the outcome left-circular,

then photon B would have collapsed into the right-circular state instantaneously.

Now if photon B is spatially separated from photon A with no possibility of any

causal influence, then its physical state must be independent of the basis in which

photon A was measured. This can only happen if the vertical and right-circular

polarization states are the elements of reality of photon B at the same time, i.e,

photon B is in the vertical polarization state and right-circular polarization state
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at the same time – which is impossible. In this way, the authors argued that the

quantum description of physical reality is incomplete, and contended that quantum

mechanics must be a part of a more complete local realistic theory involving hidden

variables.

The issues raised by EPR were famously debated by Einstein and Bohr among

others for several years, but a consensus was never reached [9, 48]. In 1964, John Bell

decided to mathematically formalize the notion of local realism, and was able to for-

mulate certain inequality relations for the measurement correlations between parts

of any composite physical system [12]. Bell showed that these inequalities would be

obeyed by any local realistic theory involving hidden variables, but were violated

by quantum theory. In essence, his inequalities provided a way to experimentally

test the EPR assumption of local realism. Subsequently, there have been numerous

experiments in which the correlations of entangled systems have been measured –

and all these experiments have demonstrated a clear violation of Bell’s inequalities

[49, 10, 11, 50, 51, 52, 53]. While earlier tests were affected by certain experimental

loopholes [49, 10, 11, 50, 51], technological advances have now led to loophole-free

violations of Bell’s inequalities [52, 53]. As a result, there is a widespread consensus

today that the existence of local hidden variable theories has been conclusively ruled

out. However, the fundamental concerns about the interpretations, consistency, and

completeness of quantum theory raised by the EPR paper are not completely set-

tled yet, and continue to be discussed and debated by researchers working on the

foundations of quantum mechanics.

1.6 Role of entanglement in quantum technolo-

gies

While entanglement mostly remained only a matter of fundamental curiosity for

physicists and philosophers for several decades after the EPR paper, it is now rec-

ognized to be a critical resource for several quantum information processing tasks
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that are widely considered to be classically impossible. The field of quantum infor-

mation can be regarded to have begun with the discovery of the no-cloning theorem

[54, 55], which states that the linearity of quantum theory forbids the cloning of

arbitrary quantum states. This theorem was initially crucial in proving that quan-

tum theory does not allow communication of information at superluminal speeds

[54, 55]. However, it was later realized that the impossibility of cloning quantum

states also enables certain communication protocols that are guaranteed to be secure

[56, 57, 58]. These initial discoveries sparked a surge of interest among researchers

in the information processing capabilities of quantum systems. Subsequently, quan-

tum systems have been theoretically and experimentally demonstrated to perform

a number of tasks such as superdense coding [13, 59], teleportation [14, 60, 61, 62],

entanglement swapping [63, 64], integer factorization [15, 65], metrology beyond the

standard quantum limit [66, 67] among others.

The precise underlying factors responsible for such enhanced information pro-

cessing capabilities are still not well-understood. While there are certain tasks such

as superdense coding [13], teleportation [14], integer factorization [15] among oth-

ers for which entanglement is essential, there are also some protocols such as B92

key distribution [57], DQC1 model of computation [68, 69], quantum search [70],

quantum secret sharing [71] among others which utilize superpositions but do not

need entanglement. At present, the role of different kinds of correlations in quantum

information processing tasks is still a topic of research [72, 73, 74, 75, 76].

1.7 Schmidt decomposition

We will now review the concept of Schmidt decomposition of entangled bipartite

(two-party) pure states. Consider a bipartite pure state |ψ⟩AB of a composite sys-

tem of two particles A and B whose Hilbert spaces have dimensionality m and n,
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respectively. In general, the state |ψ⟩AB has the form

|ψ⟩AB =
m∑
i=1

n∑
j=1

cij|i⟩A|j⟩B, (1.17)

where cij are complex coefficients that satisfy
∑

i,j |cij|2 = 1. The kets |i⟩A’s for

i = 1, 2, ..,m and |j⟩B’s for j = 1, 2, .., n are orthonormal basis vectors in the Hilbert

spaces of A and B, respectively. Without any loss of generality, let us assume that

m ≥ n, i.e, the dimensionality of A is greater than or equal to that of B. We can

then rewrite Equation (1.17) as

|ψ⟩AB =
m∑
i=1

n∑
j=1

n∑
k=1

uikdkkvkj|i⟩A|j⟩B, (1.18)

where we have performed a singular value decomposition of the complex matrix of

coefficients cij into a product of anm×m unitary matrix formed by complex elements

uik, an m× n rectangular diagonal matrix formed by n real diagonal elements dkk,

and the n × n unitary matrix formed by complex elements vkj. We can further

simplify Equation (1.18) to get

|ψ⟩AB =
n∑

k=1

dkk|k⟩A|k̃⟩B, (1.19)

where we have denoted |k⟩A =
∑m

i=1 uik|i⟩A and |k̃⟩B =
∑n

j=1 vkj|j⟩B. The above

equation (1.19) is called the Schmidt decomposition of the state |ψ⟩AB. The prob-

abilities |dkk|2 for k = 1, ..., n are collectively referred to as the Schmidt spectrum

of the state. As the state |ψ⟩AB is normalized, the Schmidt spectrum is also nor-

malized such that
∑

k |dkk|2 = 1. The correlations between the particles A and B of

the entangled system AB are completely characterized by the Schmidt spectrum of

the state. The effective dimensionality of the spectrum can be quantified using the

Schmidt number K, defined as K = 1/
∑

k d
4
kk.

It is known that the high-dimensional OAM-entangled states produced from

PDC of a Gaussian pump have a Schmidt-decomposed form in the OAM product
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basis of the signal and idler photons [36, 77]. In Chapter 3, we will experimentally

and theoretically characterize the Schmidt spectrum of these entangled two-photon

states from PDC.

1.8 Quantifying coherence and entanglement

As discussed in Section 1.2, in optical coherence theory, coherence is quantified in

terms of the visibility of the interference, which is typically proportional to a corre-

lation function involving the fields at different spacetime points or polarization di-

rections. While such correlation functions are extremely useful in quantitatively ex-

plaining a variety of interference effects of classical and non-classical fields, they are

manifestly basis-dependent and therefore, quantify coherence only in an restricted

sense [2, 78, 3]. The necessity of a basis-independent quantification of coherence was

already emphasized by Glauber in his seminal 1963 paper where, concerning a set

of conditions for full coherence, he stated that, “It is clear, however, that these con-

ditions do not constitute an adequate definition of coherence, since they are not, in

general, invariant under the rotation of coordinate axes.” [4]. Such a basis-invariant

quantification of coherence is possible for the two-dimensional polarization states of

light in terms of a measure called the degree of polarization [78, 3]. As the 2 × 2

coherency matrix [2] that describes the polarization state of a light field is formally

identical to the 2×2 density matrix [16] that describes an arbitrary two-dimensional

quantum state, the degree of polarization can also be used to quantify the intrinsic

coherence of two-dimensional quantum states. Over the last decades, some studies

have attempted to generalize the degree of polarization and its known interpreta-

tions to higher-dimensional states [79, 80, 81, 82, 83, 84, 85]. However, no single

measure that generalizes all the known interpretations of the degree of polarization

had been well-established as a basis-invariant measure for high-dimensional states.

A recent study established just such a measure for finite-dimensional states [86].

In Chapter 6, we will generalize this measure to quantify the intrinsic coherence of

infinite-dimensional states.
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The quantification of entanglement is an active topic of research in quantum

information theory [20]. The well-known measures referred to as entanglement of

formation and distillable entanglement have been formulated in terms of how much

operational resource a state provides for certain tasks under the constraints of lo-

cal operations and classical communication (LOCC) [17]. Another measure known

as the relative entropy of entanglement has the geometric interpretation as the dis-

tance from the closest separable state in the Hilbert space [16]. These measures have

the disadvantage that their computation in general requires extremely cumbersome

optimization procedures. Yet another measure known as negativity quantifies en-

tanglement of a state as the sum of the negative eigenvalues resulting from a partial

transpose operation on the state [87, 88]. While this measure is easy to compute, it

does not satisfy the property of additivity under tensor products that is desired in a

valid entanglement measure. Moreover, it also has the undesirable feature that it can

be zero even for an entangled state. Another related measure known as logarithmic

negativity satisfies additivity but has the counterintuitive feature that it can some-

times increase under LOCC operations [88]. In summary, for general multipartite

(many-party) quantum systems, no well-accepted measure exists at present. How-

ever, for the special case of two-qubit states, there is a measure called concurrence

which is well-accepted as a valid measure of entanglement [18]. While this measure

does not have a clear physical or operational interpretation, it has the advantage

that a closed-form analytic expression in terms of the density matrix has been de-

rived [89]. We will use concurrence to quantify the entanglement of two-qubit states

of the signal-idler photons in the polarization and energy-time degrees of freedom

in Chapter 4 and Chapter 5.

1.9 A basic introduction to nonlinear optics

Nonlinear optics studies the interaction of a medium with electromagnetic fields in

which the optical properties of the medium are modified by the presence of the field

[21]. When a medium interacts with an electric field, the electrons in the atoms of the
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medium experience a Coulomb force which displaces them from their equilibrium

positions. As a result, the atoms acquire a dipole moment that depends on the

electric field. The dipole moment per unit volume is termed as the polarization of

the medium. For simplicity, we assume the polarization P (r, t) and the external

electric field E(r, t) to be scalar quantities. In situations where the electric fields are

weak, the displacements of the electrons from their equilibrium positions are small.

This corresponds to the regime of linear optics, in which the polarization P (r, t) can

be written in terms of the electric field E(r, t) as

P (r, t) = ϵ0χ
(1)E(r, t), (1.20)

where ϵ0 is the permittivity of free space and χ(1) is linear susceptibility of the

medium. However, when electric field strengths are sufficiently high – which corre-

sponds to the regime of nonlinear optics – the polarization P (r, t) must be expressed

as a power series expansion of the form

P (r, t) = ϵ0χ
(1)E(r, t) + ϵ0χ

(2)E2(r, t) + ϵ0χ
(3)E3(r, t) + ... (1.21)

Here, the quantities χ(2), χ(3), ... are the second-order and third-order nonlinear sus-

ceptibilites of the medium, and so on. For centrosymmetric crystals, i.e, for crystals

that possess inversion symmetry, the even-ordered nonlinear susceptibilities vanish

[21]. On the other hand, for non-centrosymmetric crystals, all the nonlinear suscep-

tibilities are in general finite. We will now derive the expression for the interaction

Hamiltonian for a second-order process in a non-centrosymmetric crystal.

Consider a non-centrosymmetric crystal interacting with an electric field E(r, t).

The electric field displacement D(r, t) inside the medium can be written as

D(r, t) = ϵ0E(r, t) + P (r, t). (1.22)

Using the above expression, we can compute the energy densityW of the field inside
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the crystal medium as

W =
1

2
D(r, t) · E(r, t)

=
1

2
[ϵ0E(r, t) + P (r, t)]E(r, t)

=
1

2

[
ϵ0E(r, t) + ϵ0χ

(1)E(r, t) + ϵ0χ
(2)E2(r, t) + ...

]
E(r, t)

≈ ϵ0
2

[(
1 + χ(1)

)
E2(r, t) + χ(2)E3(r, t)

]
= WL +WNL

where WL and WNL are the linear and nonlinear interaction contributions, respec-

tively, to the energy density. As we are interested in second-order nonlinear optical

effects, we have retained terms only upto the second order from the perturbative

expansion of Equation (1.21). The form of the nonlinear interaction Hamiltonian

H(t) can be computed as

H(t) =

∫
V

WNL d
3r =

ϵ0
2

∫
V

d3rχ(2)E3(r, t), (1.23)

where the integration is carried out over the volume V of the crystal. We will now

describe the second-order nonlinear optical process that is the topic of focus for this

thesis, namely, parametric down-conversion (PDC).

1.10 Parametric down-conversion

Parametric down-conversion (PDC) is a second-order nonlinear optical process in

which – as depicted in Figure 1.3 – a single photon, termed as pump, interacts with

a non-centrosymmetric crystal and gets annihilated to create a pair of photons,

termed as signal and idler [21]. The word parametric refers to the fact that there

is no net energy transfer to the crystal medium, and the word down-conversion

refers to the fact that the frequencies of the signal and idler photons are lower than

the frequency of the pump photon. The constraints of energy, momentum, and
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Figure 1.3: (a) Schematic depiction of parametric down-conversion (PDC) – a non-
linear optical process in which a pump photon interacts with a second-order nonlin-
ear crystal and produces a pair of entangled photons, termed as signal and idler. (b)
By virtue of energy conservation, the frequency of the pump photon is equal to the
sum of the frequencies of the signal and idler photons. (c) By virtue of momentum
conservation, the wave vector of the pump photon is equal to the sum of the wave
vectors of the signal and idler photons.

orbital angular momentum conservation, referred to as phase-matching conditions,

render the signal and idler photons entangled in the temporal, spatial, and angular

degrees of freedom. In addition, using the type-I double crystal [34] and type-II [33]

configurations, it is also possible to render the signal-idler photons entangled in the

polarization degree of freedom.

In general, the two-photon quantum state describing the signal and idler pho-

tons depends on the physical parameters of the crystal configuration and the pump

photon. These parameters can be varied experimentally to control the generated

two-photon state. For instance, for a specific relative orientation of the crystal with

respect to the pump photon propagation direction, the signal and idler photons are

emitted in the same direction as the original pump photon. This condition is known

as collinear emission. Upon changing the crystal orientation, the phase-matching

conditions result in the signal and idler photons being emitted in different direc-

tions. This is known as non-collinear emission. In Chapter 3, we will explore the

variation of the angular correlations of the signal-idler photons in the collinear and

non-collinear emission regimes. In Chapters 4 and 5, we will further explore the

dependence of the correlations of the signal and idler photons on the coherence

properties of the pump photon in the polarization and temporal degrees of freedom.

We will now briefly outline the derivation of the quantum interaction Hamiltonian

operator for PDC from the classical interaction Hamiltonian for the process.
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The classical interaction Hamiltonian of Equation (1.23) for the process of PDC

takes the form [22, 24]

H(t) =
ϵ0
2

∫
V

d3rχ(2)Ep(r, t)Es(r, t)Ei(r, t), (1.24)

where Ej(r, t) for j = p, s, and i represent the electric fields of the pump, signal

and idler fields, respectively. Now as we discussed in Section 1.2, in the quantum

theory the electric field amplitudes are replaced by field operators which can be

expanded as in Equation (1.8) as a sum of positive and negative analytic field op-

erators. Using the expansion, the expression for the Hamiltonian operator Ĥ(t)

corresponding to the classical Hamiltonian H(t) of Equation (1.24) can be com-

puted. Each of the operators Ej(r, t) for j = p, s, and i is written as a sum of

their positive and negative analytic field operators, and their product is evaluated.

The product has a total of eight terms corresponding to all the combinations of the

analytic field operators. Among these eight terms, the contributions from six terms

can be ignored as they average out to zero when the Hamiltonian is integrated with

respect to time. This procedure corresponds to making the rotating wave approxi-

mation (see Section 2.3 of Ref. [90]). The terms whose contributions survive are the

energy-conserving terms Ê
(+)
p (r, t)Ê

(−)
s (r, t)Ê

(−)
i (r, t) and its Hermitian conjugate

Ê
(−)
p (r, t)Ê

(+)
s (r, t)Ê

(+)
i (r, t). Thus, the effective interaction Hamiltonian for PDC

takes the form

Ĥ(t) =
ϵ0
2

∫
V

d3rχ(2)Ê(+)
p (r, t)Ê(−)

s (r, t)Ê
(−)
i (r, t) + H.c. (1.25)

We will use the above expression to compute the form of the two-photon state in

the transverse spatial and temporal degrees of freedom in Chapter 3 and Chapter

5, respectively.
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1.11 Correlations in parametric down-conversion

In the past, several studies have investigated the correlations between the signal

and idler photons in the polarization [33, 34], temporal [22, 35, 28], spatial [23, 26,

30, 91], and angular [36, 31, 37] degrees of freedom. As the entangled states from

PDC remain the most widely used entangled states, a precise characterization of

their correlations is important for harnessing them in various quantum applications

[77, 92, 37, 93]. In Chapter 3, we will present our experimental and theoretical

characterizations of the angular correlations of these states.

In addition, it is also of fundamental interest to understand how the intrinsic

correlations of the pump photon are transferred through the process of parametric

down-conversion to manifest as entanglement between the signal and idler photons

[22, 23, 26, 30, 29, 91]. In the past, several studies have attempted to understand

how the correlations of the signal-idler photons are affected by the various pump

and crystal parameters in PDC [35, 33, 34, 27]. However, studies on the transfer of

correlations from the pump photon to the signal-idler photons have been carried out

mainly in the spatial degree of freedom [23, 26, 30, 91]. In Chapter 4. and Chapter

5, we will study the transfer of correlations from the pump photon to the signal-idler

photons in the polarization and temporal degrees of freedom.

1.12 Summary

In this chapter, we introduced the concepts of optical coherence, quantum entangle-

ment, and parametric down-conversion. In the forthcoming chapters of this thesis,

we will present our experimental and theoretical studies on the correlations of the

signal and idler photons produced from PDC in various degrees of freedom. In

Chapter 2, we will present a novel single-shot interferometric technique for measur-

ing the angular correlations of a field. In Chapter 3, we will present experimental

and theoretical characterizations of the angular correlations between the signal and

idler photons produced from PDC of a Gaussian pump. In Chapters 4 and 5, we will
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explore the transfer of correlations from the pump photon to the entangled signal-

idler photons in the polarization and temporal degrees of freedom, respectively.

We will show that the coherence of the pump photon predetermines the maximum

achievable entanglement between the signal and idler photons. In Chapter 6, we

will present the theoretical formulation of a basis-invariant measure of coherence for

infinite-dimensional quantum states. This measure will now enable a basis-invariant

quantification of the intrinsic correlations of the pump and signal-idler fields in the

OAM, photon number, position and momentum degrees of freedom.



Chapter 2

Single-shot measurement of

angular correlations

2.1 Introduction

In recent decades, the orbital angular momentum (OAM) degree of freedom of

photons has gained a lot of attention for its potential applicability in the field

of quantum information processing [16, 94, 36, 95, 93, 96]. This is because un-

like the polarization basis which is intrinsically two-dimensional, the OAM basis is

discrete and infinite-dimensional [44, 45, 28, 97]; and thus provides a natural ba-

sis for preparing high-dimensional states. In comparison to two-dimensional qubit

states [56, 57, 98], high-dimensional qudit states have many distinct advantages in

quantum protocols. In quantum communication, the use of high-dimensional states

leads to enhanced security [99, 100, 101] and transmission bandwidth [102, 103]. For

quantum computation, high-dimensional states have been shown to have more effi-

cient gate implementations [104, 105]. Moreover, high-dimensional states also have

inherent advantages for supersensitive measurements [106] and fundamental tests of

quantum mechanics [107, 108, 109, 110]. Even in the classical domain, the use of

high-dimensional superpositions of OAM-states can increase the system capacities

and spectral efficiencies [111, 112, 113].
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In this chapter, we consider an important problem that arises in high-dimensional

OAM-based classical and quantum protocols, namely, the problem of measuring the

OAM spectrum or distribution of an incoherent mixture of different OAM-carrying

modes. The existing methods for measuring the orbital-angular-momentum (OAM)

spectrum suffer from issues such as poor efficiency [36], strict interferometric sta-

bility requirements [47] or too much loss [32, 114]. Furthermore, most techniques

inevitably discard part of the field and measure only a post-selected portion of the

true spectrum [36, 32, 114]. Here, we propose and demonstrate an interferometric

technique for measuring the true OAM spectrum of optical fields in a single-shot

manner [115]. The technique directly encodes the angular coherence function in the

output interferogram. In the absence of noise, a single-shot acquisition of the out-

put interferogram is sufficient to obtain the OAM spectrum by an inverse Fourier

transform. In the presence of noise, two appropriately chosen acquisitions can be

used to infer the OAM spectrum in a noise-insensitive manner.

The chapter has been adapted almost verbatim from Ref. [115] and is organized

here as follows: In Section 2.2, we present a brief overview of the OAM of light.

In Section 2.3, we introduce the concepts of OAM spectrum and angular coherence

function, and describe their Fourier relationship. In Section 2.4, we review the

existing techniques for measuring the OAM spectrum and their limitations. In

Section 2.5 and Section 2.6, we describe the single-shot technique and the two-shot

noise elimination procedure. In Section 2.7, we present experimental results of a

proof-of-concept demonstration of the technique using laboratory-synthesized fields

with known spectra. In Section 2.8, we conclude with a summary of our technique.

2.2 Orbital Angular Momentum (OAM) of light

The earliest experiments aimed at measuring the angular momentum of light were

performed by Raman and Bhagavantam in 1931 [116, 117]. The authors studied

Rayleigh scattering of monochromatic light from different molecular gases and were

led to the conclusion that a photon possesses an intrinsic spin angular momentum
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intensity phase

Figure 2.1: Intensity and phase profiles of Laguerre-Gauss (LG) modes with az-
imuthal index l and radial index p. The modes have the characteristic eilϕ phase
profile which gives them an OAM of lℏ per photon. The sign (positive or negative)
of l denotes the sense (clockwise or anti-clockwise) and the magnitude of l denotes
the number of times the phase changes from 0 to 2π in the transverse plane. The
radial index p only determines the radial intensity profile.

of magnitude ℏ. Later in 1936, Beth found that when right circularly-polarized light

is passed through a birefringence plate which converts it to left-circularly polarized

light, an angular momentum of 2ℏ per photon is transferred to the plate [118]. This

was understood by assigning the right and left circularly-polarized light fields with

a spin angular momentum of ℏ and −ℏ per photon, respectively.

In addition to spin angular momentum, light can also possess orbital angular

momentum. In this context, an important discovery was made in 1992 by Allen et

al., who observed that certain paraxial fields known as Laguerre-Gauss (LG) modes
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possess integer values of orbital angular momentum per photon in units of ℏ [94].

The Laguerre-Gauss modes are exact solutions of the paraxial Helmholtz equation,

and their transverse spatial electric field profiles are denoted in polar co-ordinates

by the Laguerre-Gauss functions LGl
p(ρ, ϕ). The azimuthal index l can take integer

values from ∞ to +∞, whereas the radial index p takes positive integer values from

0 to ∞. We depict the intensity and phase profiles of the first few LG modes in

Figure 2.1. The functions LGl
p(ρ, ϕ) take the form [119]

LGl
p(ρ, ϕ) = A

(
ρ
√
2

w

)|l|

L|l|
p

(
2ρ2

w2

)
exp

(
− ρ2

w2

)
eilϕ, (2.1)

where w is the beam waist, A is a scaling constant, and Ll
p(x) is the Laguerre

polynominal given by

Ll
p(x) =

p∑
m=0

(−1)m
(l + p)!

(p−m)!(l +m)!m!
xm. (2.2)

The azimuthal phase dependence of eilϕ is responsible for imparting the mode with

an OAM of lℏ per photon, whereas the radial index p only determines the radial

intensity profile, and not the OAM of the photons.

2.3 OAM spectrum and angular coherence func-

tion of a field

The LG modes form an orthonormal and complete basis in the transverse spatial

degree of freedom. As a result, the transverse electric field profile Ein(ρ, ϕ) of any

paraxial beam can be expressed in this basis as

Ein(ρ, ϕ) =
∑
l,p

AlpLG
l
p(ρ, ϕ) =

∑
l,p

AlpLG
l
p(ρ)e

ilϕ, (2.3)



28

where Alp are stochastic complex variables. The corresponding correlation function

W (ρ1, ϕ1; ρ2, ϕ2) is

W (ρ1, ϕ1; ρ2, ϕ2) ≡ ⟨E∗
in(ρ1, ϕ1)Ein(ρ2, ϕ2)⟩e

=
∑
l,p,p′

αlpp′LG
∗l
p (ρ1, ϕ1)LG

l
p′(ρ2, ϕ2), (2.4)

where ⟨· · · ⟩e represents an ensemble average over many realizations. The correlation

function when integrated over the radial coordinate yields the angular coherence

function

W (ϕ1, ϕ2) ≡
∫ ∞

0

ρdρW (ρ, ϕ1; ρ, ϕ2). (2.5)

We shall consider the special class of partially coherent fields that satisfy ⟨A∗
lpAl′p′⟩e =

αlpp′δl,l′ , where δl,l′ is the Kronecker-delta function. Such fields are incoherent mix-

tures of different OAM-carrying modes. For such fields, the angular coherence func-

tion takes the form

W (ϕ1, ϕ2) → W (ϕ1 − ϕ2) =
1

2π

∞∑
l=−∞

Sle
−il(ϕ1−ϕ2), (2.6)

where Sl =
∑

p αlpp, and where we have used the identity
∫∞
0
ρLG∗l

p (ρ)LG
l
p′(ρ)dρ =

δpp′/2π. The quantity Sl is referred to as the OAM spectrum of the field. It is

normalized such that
∑

l Sl = 1 and
∫ 2π

0
W (ϕ, ϕ)dϕ = 1. The Fourier transform

relation of Equation (2.6) is the angular analog of the temporal Wiener-Khintchine

theorem 1 for temporally-stationary fields discussed in Section 1.3 of this thesis (also

see Section 2.4 of [120]). As a consequence of this relation, the OAM spectrum and

the angular coherence function of a field are informationally equivalent.

1Interestingly, yet another relation analogous to the Wiener-Khintchine theorem is the van
Cittert-Zernike theorem which relates the intensity profile of a spatially incoherent source to the
far-field spatial coherence function by a Fourier transform [120]
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2.4 Existing techniques for OAM spectrum mea-

surement

Presently, there are primarily two approaches taken by existing techniques for mea-

suring the OAM spectrum of a field. In the first approach [36], one displays a specific

hologram onto a spatial light modulator (SLM) for a given input OAM-mode and

then measures the intensity at the first diffraction order using a single mode fiber.

This way, by placing different holograms specific to different input l in a sequential

manner, one is able to measure the spectrum. However, this method is highly in-

efficient because the required number of measurements scales with the size of the

input spectrum and also because of the non-uniform fiber-coupling efficiencies for

different input l-modes [121]. Moreover, the fiber-coupling efficiencies also have a

dependence on the radial indices of the input modes. As a result, the measured

spectrum corresponds to a post-selected part of the true spectrum.

The second approach relies on measuring the angular coherence function of the

field and then inferring the OAM-spectrum through an inverse Fourier transform.

One way to measure the angular coherence function is by measuring the interference

visibility in a Mach-Zehnder interferometer as a function of the Dove-prism rotation

angle [47]. Although this method does not have any coupling-efficiency issue, it still

requires a series of measurements for obtaining the angular coherence function. This

necessarily requires that the interferometer be kept aligned for the entire range of

the rotation angles. A way to bypass the interferometric stability requirement is by

measuring the angular coherence function using angular double-slits [32, 114, 31].

However, this method is not suitable for fields that have very low intensities as only

a very small portion of the incident field is used for detection.

Thus the existing methods for measuring the OAM spectrum information suffer

from either poor efficiency [36] or strict interferometric stability requirements [47] or

too much loss [32, 114]. In addition, most techniques [36, 32, 114] inevitably discard

part of the field and yield only a post-selected portion of the true spectrum. We
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Figure 2.2: (a) Schematic of the experimental setup for single-shot measurement
of OAM spectrum of lab-synthesized fields. (b) Describing how a mirror reflection
changes the azimuthal phase of an LG mode. An incident beam with the azimuthal
phase profile eil(ϕ+ϕ0) transforms into a beam having the azimuthal phase profile
e−il(ϕ−ϕ0), where ϕ0 is the angle between the reflection axis (RA) and the zero-
phase axis (dashed axis) of the incident mode. (c) Illustrating the interference effect
produced by the interferometer when the incident field is an LGl

p=0(ρ, ϕ) mode with
l = 4. At the output, we effectively have the interference of an eilϕ mode with an
e−ilϕ mode, and we obtain the output interference intensity in the form of a petal
pattern with the number of petals being 2|l| = 8. SLM: spatial light modulator; SF:
spatial filter; T: translation stage.

shall now demonstrate a novel interferometric technique for measuring the true OAM

spectrum in a single-shot manner. Moreover, as the technique requires only a single-

shot measurement, the interferometric stability requirements are less stringent.

2.5 Description of a single-shot technique

Consider the situation shown in Figure 2.2(a). A partially coherent field of the type

represented by Equations (2.3) and (2.4) enters the Mach-Zehnder interferometer

having an odd and an even number of mirrors in the two arms [shown in Figure 2.2(c)

]. As illustrated in Figure 2.2(d), each reflection transforms the polar coordinate

as ρ → ρ and the azimuthal coordinate as ϕ + ϕ0 → −ϕ + ϕ0 across the reflection

axis (RA). Here ϕ is the angle measured from RA, and ϕ0 is the angular-separation
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between RA and the zero-phase axis of the incident mode (dashed-axis). The phase

ϕ0 does not survive in intensity expressions. So, without the loss of any generality,

we take ϕ0 = 0 for all incident modes. Therefore, for the input incident field Ein(ρ, ϕ)

of Equation (2.3), the field Eout(ρ, ϕ) at the output port becomes

Eout(ρ, ϕ) =
√
k1Ein(ρ,−ϕ)ei(ω0t1+β1) +

√
k2Ein(ρ, ϕ)e

i(ω0t2+β2+γ̃). (2.7)

Here, t1 and t2 denote the travel-times in the two arms of the interferometer; ω0

is the central frequency of the field; β1 and β2 are the phases other than the

dynamical phase acquired in the two arms; γ̃ is a stochastic phase which incor-

porates the temporal coherence between the two arms; k1 and k2 are the scal-

ing constants in the two arms, which depend on the splitting ratios of the beam

splitters, etc. The azimuthal intensity Iout(ϕ) at the output port is defined as

Iout(ϕ) ≡
∫
ρ⟨E∗

out(ρ, ϕ)E
∗
out(ρ, ϕ)⟩edρ, and using Equations (2.3)-(2.9), we can eval-

uate it to be

Iout(ϕ) =
1

2π
(k1 + k2) + γ

√
k1k2W (2ϕ)eiδ + c.c. (2.8)

Here, we have defined δ ≡ ω0(t2 − t1) + (β2 − β1), and γ = ⟨eiγ̃⟩ quantifies the

degree of temporal coherence. So, if the precise values of k1, k2, γ and δ are known

then W (2ϕ) can be obtained by measuring Iout(ϕ) through a single-shot image of

the output interferogram and subsequently the spectrum can be computed by using

Sl =

∫ 2π

0

W (ϕ1 − ϕ2)e
il(ϕ1−ϕ2)dϕ. (2.9)

The single-shot nature of our scheme can be extremely useful since it makes the

alignment requirements much more relaxed. Moreover, our scheme uses the entire

incoming light field and therefore does not suffer from the photon-loss issue faced

by schemes such as those based on using angular double-slits [32, 114].

We note that the intensity expression in Equation (2.8) is very different from

the output intensity expression one obtains in a conventional Mach-Zehnder inter-

ferometer having a Dove prism [37]. In Equation (2.8), the output intensity and the
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angular correlation function both depend on the detection-plane azimuthal angle

ϕ. As a result, the angular correlation function W (2ϕ) comes out encoded in the

azimuthal intensity profile Iout(ϕ). However, in the conventional Mach-Zehnder in-

terferometer, the output intensity has no azimuthal variation; one measures only the

total output intensity, and the angular correlation function is measured by measur-

ing the interference-visibility of the total-intensity for a range of Dove prism rotation

angles.

2.6 Two-shot noise elimination

Although it is in principle possible to measure the OAM spectrum in a single-shot

manner as discussed above, it is practically highly difficult to do so because of the

requirement of a very precise knowledge of k1, k2, γ, and δ. Moreover, obtaining a

spectrum in this manner is susceptible to any noise in the measured Iout(ϕ), which

results in errors in the measured spectrum. In particular, there could be intensity

noise arising from ambient light exposures, beam intensity distortions due to im-

perfections in optical elements, etc, i.e, noise that neither depends on δ nor has a

shot-to-shot variation. We now show that it is possible to eliminate such noise com-

pletely while also relinquishing the need for a precise knowledge of k1, k2, γ, and δ,

just by acquiring one additional output interferogram. We present our analysis for

a symmetric spectrum, that is, Sl = S−l. (See Appendix A. for the non-symmetric

case). Let us assume that the experimentally measured output azimuthal intensity

Īout(ϕ) contains some noise In(ϕ) in addition to the signal Iout(ϕ), that is,

Īout(ϕ) = In(ϕ) +
1

2π
(k1 + k2) + 2γ

√
k1k2W (2ϕ) cos δ.

Now, suppose that we have two interferograms, Īδcout(ϕ) and Īδdout(ϕ), measured at

δ = δc and δ = δd, respectively. The difference in the intensities ∆Īout(ϕ) = Īδcout(ϕ)−
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Īδdout(ϕ) of the two interferograms is then given by

∆Īout(ϕ) = ∆In(ϕ) + 2γ
√
k1k2(cos δc − cos δd)W (2ϕ),

where ∆In(ϕ) = Iδcn (ϕ) − Iδdn (ϕ) is the difference in the noise intensities. In situ-

ations in which the noise neither has any explicit functional dependence on δ nor

does it vary from shot to shot, ∆In(ϕ) = 0, and the difference intensity ∆Īout(ϕ)

then becomes directly proportional to the angular coherence function W (2ϕ). Mul-

tiplying each side of the above equation by ei2lϕ, integrating over ϕ, using the def-

inition of Equation (2.9), and defining the measured OAM spectrum S̄l as S̄l ≡∫ 2π

0
∆Īout(ϕ)e

i2lϕdϕ, we obtain

S̄l = 2γ
√
k1k2(cos δc − cos δd)Sl. (2.10)

The measured OAM-spectrum S̄l is same as the true input OAM-spectrum Sl up

to a scaling constant. We thus see that the OAM-spectrum can be computed in

a two-shot manner without having to know the exact values of k1, k2, γ, δc or δd.

However, in order to get a better experimental signal-to-noise ratio, it would be

desirable to have γ ≈ 1 by minimizing the path length difference, k1 ≈ k2 ≈ 0.5 by

choosing precise 50 : 50 beam splitters. Moreover, it is also desirable to have δc ≈ 0,

and δd ≈ π. We will now describe a proof-of-concept experimental demonstration

of this technique using laboratory synthesized fields with known spectra.

2.7 Proof-of-concept experimental demonstration

In our experiment, we spatially filtered the beam from a standard He-Ne laser of

wavelength 632 nm to obtain a high purity Gaussian beam. The Gaussian beam was

then incident on a Holoeye Pluto BB spatial light modulator (SLM) on which a holo-

gram corresponding to various LGl
p=0 modes were displayed. The holograms were

generated using the Type 3 method of Ref.[122]. The generated LGl
p=0 modes were
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sequentially made incident into the interferometer and the corresponding output

interferograms were imaged using an Andor iXon Ultra electron-multiplying charge-

coupled device (EMCCD) camera having 512 × 512 pixels. To reduce pixelation-

related noise, the interferograms were scaled up in size by a factor of four using

a bicubic interpolation method. For each individual LGl
p=0 mode the camera was

exposed for about 0.4 s. The sequential acquisition was automated to ensure that δ

is the same for all the modes. The azimuthal intensity Īδout(ϕ) plots were obtained

by first precisely positioning a very narrow angular region-of-interest (ROI) at an-

gle ϕ in the interferogram image and then integrating the intensity within the ROI

up to a radius that is sufficiently large. In order to ensure minimal shot-to-shot

noise variation, the interferometer was covered after the required alignment with a

box and the measurements were performed only after it had stabilized in terms of

ambient fluctuations. As shown in Figure 2.2(a), He-Ne laser is spatially filtered

and made incident onto a Holoeye Pluto SLM. The measured interferograms and

the corresponding azimuthal intensities for a few LGl
p=0(ρ, ϕ) modes for δc ≈ 2mπ,

and δd ≈ (2m + 1)π, where m is an integer, are presented in Figure 2.3(a) and

Figure 2.3(b), respectively. A very good match between the theory and experiment

indicates that the LGl
p=0(ρ, ϕ) modes produced in our experiments are of very high

quality. By controlling the strengths of the synthesized LGl
p=0(ρ, ϕ) modes for l

ranging from l = −20 to l = 20, we synthesize two separate fields: One with a

rectangular spectrum, and the other one with a Gaussian spectrum. The repre-

sentative interferogram corresponding to a particular field as input is obtained by

adding individual interferograms for l ranging from l = −20 to l = +20. The se-

rial acquisition is automated to ensure that δ is the same for all the modes. Two

such representative interferograms, one with δ = δc and other one with δ = δd

are recorded for each field. Figs. 2.3(c) and 2.3(d) show the measured output in-

terferograms, the corresponding azimuthal intensities, and the measured spectrum

S̄l computed using Equation (2.10) for the synthesized Gaussian and Rectangular

OAM spectrum, respectively. We find a very good match between the synthesized
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Figure 2.3: (a) and (b) Measured output interferograms and the correspond-
ing azimuthal intensities for input LGl

p=0(ρ, ϕ) modes with l = 1, 4, and 16 for
δ = δc ≈ 2mπ and δ = δd ≈ (2m + 1)π, respectively, where m is an integer. (c)
Measured output interferograms, the azimuthal intensities, and the measured spec-
trum for the synthesized input field with a Gaussian OAM-spectrum. (d) Measured
output interferograms, the azimuthal intensities, and the measured spectrum for the
synthesized input field with a Rectangular OAM-spectrum.

spectra and the measured spectra. There is some noise in the measured spectra for

low values of l, which we believe could be due to SLM imperfections and various

wave-front aberrations in the laser beam.
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2.8 Summary

In summary, we have proposed and demonstrated an interferometric technique that

measures the OAM spectrum of light fields with only two acquisitions of the output

interferograms. This technique is insensitive to noise and does not require a precise

characterization of the setup parameters, such as beam splitting ratios, degree of

temporal coherence, etc. As the measurement comprises of only two acquisitions

irrespective of the number of OAM modes in the field, this technique is highly effi-

cient in comparison to other existing techniques. Moreover, this technique does not

inherently involve any post-selection of the measured field and therefore measures

the true OAM spectrum.

We finally mention some of the potential applications of this technique. First,

the concept of image-inversion utilized in our technique, can be employed in more

general settings to probe correlation properties and spectral characteristics of light

fields in degrees of freedom other than the OAM [123]. Second, the unparalleled

efficiency of our technique can be used to characterize high-dimensional OAM en-

tangled states for information processing applications. This second application will

be demonstrated in the next chapter for the high-dimensional OAM-entangled states

produced from PDC of a Gaussian pump.



Chapter 3

Angular correlations in parametric

down-conversion

3.1 Introduction

It is known that by virtue of orbital-angular-momentum (OAM) conservation, the

two-photon signal-idler states produced from parametric down-conversion (PDC)

are entangled in the OAM degree of freedom. Moreover, these states are high-

dimensional entangled states, and have become a natural choice for several high-

dimensional quantum information applications. To this end, there have been intense

research efforts, both theoretically [92, 77, 124, 125, 32, 126, 127] and experimentally

[36, 128, 31, 129, 37, 130, 115], for the precise characterization of high-dimensional

OAM-entangled states produced by PDC. Although a general OAM-entangled state

requires state tomography for its complete characterization, the experimentally rel-

evant case of OAM-entangled states produced using a Gaussian pump beam can be

characterized by measuring just the angular Schmidt spectrum [92, 77, 37], which is

defined as the probability Sl of signal and idler photons getting detected with OAM

values lℏ and −lℏ, respectively.

The characterization of the angular Schmidt spectrum has been challenging,

both, experimentally and theoretically. On the experimental front, several tech-
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niques have been developed for measuring the angular Schmidt spectrum. The first

set of techniques is based on using fiber-based projective measurements [36, 31, 128,

129, 130]. However, these techniques are very inefficient because the required num-

ber of measurements scales with the size of the input spectrum. Furthermore, these

techniques measure only the projected spectrum instead of the true spectrum [121].

The second set of techniques is based on inferring the spectrum by measuring the

angular coherence function [37, 32]. Although these techniques do measure the true

spectrum, they either require a series of coincidence measurements and have strict

interferometric stability requirements [37] or suffer from too much loss [32]. More

recently, an interferometric technique has been demonstrated that can measure the

true angular Schmidt spectrum in a very efficient single-shot manner [115].

On the theoretical front, Torres et al. have derived a formula for calculating

the spectrum for collinear phase matching [77]. However, this formula involves a

four-dimensional integration followed by two infinite summations over the radial

indices. Although the summations have been shown to converge for certain set of

experimental parameters, the convergence is not explicitly proved for an arbitrary

set of parameters. Moreover, it is extremely inefficient to first calculate the contri-

butions due to sufficiently large number of radial modes and then sum them over.

Subsequent studies have analytically performed the four-dimensional integration for

certain collinear phase-matching conditions [124, 125], but they still suffer from the

same set of issues due to infinite summations. In a recent study by Zhang and Roux

[127], the angular Schmidt spectrum in non-collinear phase matching condition was

studied. However, their calculation includes contributions only from the first radial

modes of the signal and idler photons, and therefore is not applicable to a generic

experimental situation.

In this chapter, we derive an exact formula for calculating the true angular

Schmidt spectrum of a two-photon state that does not suffer from the above men-

tioned issues since the infinite summations over radial modes are performed ana-

lytically. Our formula is valid for both collinear and non-collinear phase matching
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conditions. Next, we use the single-shot technique developed in the previous chapter

to experimentally characterize the angular Schmidt spectrum of entangled photons

produced by PDC of a Gaussian pump from collinear to highly non-collinear emis-

sion regimes.

The contents of this chapter, which appear almost verbatim from Ref. [131], are

organized as follows: In Section 3.2, we derive the form of the two-photon state

produced from PDC in the transverse spatial representation. In Section 3.3, we

present the definition of angular Schmidt spectrum of the two-photon state pro-

duced from PDC. In Section 3.4, we present the derivation of the analytic formula

for computing the angular Schmidt spectrum. In Section 3.5, we present our experi-

mental characterization of the angular Schmidt spectrum of down-converted photons

from collinear to non-collinear emission regimes. In Section 3.6, we conclude with a

summary of this chapter.

3.2 Two-photon state produced from parametric

down-conversion

We will now derive the spatial representation of the two-photon state produced from

PDC. We closely follow the calculations presented in Ref. [29, 22, 132]. As derived

in Section 1.10, the interaction Hamiltonian Ĥ(t′) for the process of PDC is given

by Equation (1.25) written as

Ĥ(t′) =
ϵ0
2

∫
V

d3rχ(2)Ê(+)
p (r, t′)Ê(−)

s (r, t′)Ê
(−)
i (r, t′) +H.c, (3.1)

where V is the interaction volume inside the nonlinear crystal, χ(2) is the second-

order non-linear susceptibility of the crystal medium, Ê
(+)
j (r, t′) and Ê

(−)
j (r, t′) are

the positive and negative complex analytic field operators of the field with j = p, s

or i corresponding to the pump, signal or idler, respectively. The field operators can
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be expanded in the plane-wave representation as

Ê(+)
p (r, t′) =

∫ +∞

−∞
Apd

3kp V (kp) e
i(kp·r−ωpt′) (3.2a)

Ê(−)
s (r, t′) =

∫ +∞

−∞
A∗

sd
3ks â

†
s(ks) e

−i(ks·r−ωst′) (3.2b)

Ê
(−)
i (r, t′) =

∫ +∞

−∞
A∗

id
3ki â

†
i (ki) e

−i(ki·r−ωit
′) (3.2c)

We have used the notation, r = (ρ, z) and kj = (qj, kjz). The scaling factors

Aj are assumed to be constant in the typical frequency range of the signal-idler

photons. The above electric field operators satisfy [Ê
(+)
j (r1, t

′
1), Ê

(+)
k (r2, t

′
2)] =

[Ê
(−)
j (r1, t

′
1), Ê

(−)
k (r2, t

′
2)] = 0 where j, k = p, s, i. Also, [Ê

(+)
j (r1, t

′
1), Ê

(−)
k (r2, t

′
2)]

is in general not zero, but one can evaluate it from Eq. (3.2) using the commuta-

tion relations [âj(ki), â
†
k(kj)] = δjk and [âj(kj), âk(kk)] = [â†j(kj), â

†
k(kk)] = 0 where

j, k = p, s, and i. The pump field, whose Fourier-domain complex amplitude of the

pump is denoted as V (kp), is assumed to be strong enough to be treated classically.

Using equations (3.2), we can express Equation (3.1) as

Ĥ(t′) =
ApA

∗
sA

∗
i ϵ0χ

(2)

2

∫
V

d3r

∫∫∫
d3kpd

3ksd
3kiV (kp)â

†
s(ks)â

†
i (ki)

× ei(kp−ks−ki)·r e−i(ωp−ωs−ωi)t
′

The state of the signal-idler field at t′ = 0 is given by

|ψ(t′ = 0)⟩ = exp

[
− i

ℏ

∫ 0

−tint

dt′Ĥ(t′)

]
|ψ(−tint)⟩. (3.3)

The state |ψ(−tint)⟩ of the signal-idler field before the PDC process is just the

vacuum state, i.e, |ψ(−tint)⟩ = |vac⟩s|vac⟩i. We note that as the Hamiltonian Ĥ(t′)

is explicitly time-dependent, it need not commute with itself at different times. As a

result, we must strictly expand the output state in terms of the time-ordered Dyson

series. However, assuming the parametric interaction to be weak, we will retain

only the first two terms of the Dyson series, which are in fact identical to those of
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the usual Taylor series expansion for a time-independent Hamiltonian [133]. The

first term is the vacuum state, and can be ignored as it does not contribute photon

detection events. The second term is written as

|ψ2⟩ =
ApA

∗
sA

∗
i ϵ0χ

(2)

2iℏ

∫ 0

−tint

dt′
∫∫

S

d2ρ

∫ L

0

dz

∫∫∫
d2qpd

2qsd
2qi

∫∫∫
dkpzdkszdkiz

× V (kp)â
†
s(ks)â

†
i (ki)e

i[(qp−qs−qi)·ρ+(kpz−ksz−kiz)z] e−i(ωp−ωs−ωi)t
′|0⟩s|0⟩i.

Note that â†s(ks)â
†
i (ki)|0⟩s|0⟩i = |ks⟩|ki⟩, where |ks⟩|ki⟩ denotes a two-photon state

in which the signal photon has wavevector ks, and idler photon has wavevector

ki. We now assume that the interaction time tint is much longer than the time

scale of the down-conversion process, but is much smaller than the time interval

between successive down-conversion events [24, 134]. Under this assumption, the

time integration can be carried out from −∞ to +∞, which yields δ(ωp − ωs − ωi).

Also, the area of interaction S is typically much smaller than the transverse area of

the crystal. Under this condition, the integral over the transverse spatial position

with respect to d2ρ can be performed from −∞ to +∞ to yield δ(qp − qs − qi).

Moreover, the integral with respect to dz over the longitudinal size L of the crystal

can be carried out analytically. Performing the above steps, we obtain

|ψ2⟩ = A

∫∫∫
d2qpd

2qsd
2qi

∫∫∫
dkpzdkszdkizV (kp)δ(qp − qs − qi)

× δ(ωp − ωs − ωi) sinc

(
∆kzL

2

)
exp

(
i
∆kzL

2

)
|ks⟩|ki⟩,

where sinc(x) ≡ sin(x)/x and ∆kz ≡ (kpz − ksz − kiz). We now assume that the

signal-idler photons with a narrow bandwidth around the central frequency ωp/2,

corresponding to degenerate parametric down-conversion. This is typically achieved

by introducing wavelength filters before detection. We also assume that the pump

is extraordinarily polarized (as in type-I PDC from a negative uniaxial crystal) [132]

and that the pump and signal-idler fields satisfy the paraxial approximation. The
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state |ψ2⟩ can then be expressed in the transverse momentum representation as [77]

|ψ2⟩ = A

∫∫
d2qsd

2qi V (qs + qi, z = 0) sinc

(
∆kzL

2

)
exp

(
i
∆kzL

2

)
|qs⟩|qi⟩ (3.4)

where V (qp, z = 0) is the transverse momentum representation of the pump field

at the crystal location z = 0. We will now present our theoretical work on the

calculation of the angular Schmidt spectrum of two-photon states produced from

parametric down-conversion.

3.3 Angular Schmidt spectrum

Consider the parametric down-conversion of a pump field with OAM index lp = 0,

for eg, a Gaussian pump. By virtue of conservation of OAM in PDC [36, 77, 92], the

OAM indices ls and li of the generated signal and idler photons, respectively, must

satisfy ls + li = 0. When the detection system is sensitive only to the OAM-mode

index, the two-photon state |ψ2⟩ has the following Schmidt-decomposed form [32]:

|ψ2⟩ =
∞∑

l=−∞

√
Sl|l⟩s| − l⟩i. (3.5)

Here |l⟩s and |l⟩i represent modes with OAM-mode indices l and −l for the signal

and idler photons, respectively. The corresponding probabilities Sl are collectively

referred to as the angular Schmidt spectrum of the two-photon state. The angular

Schmidt spectrum quantifies the dimensionality and the entanglement of the state

[92, 77, 37].
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3.4 Derivation of the analytic formula

Consider a general two-photon state |ψ2⟩ of signal-idler photons written in the

transverse-momentum basis as [22]:

|ψ2⟩ =
∫∫ ∞

−∞
Φ(qs, qi)|qs⟩s|qi⟩idqsdqi, (3.6)

where Φ(qs, qi) is the wavefunction of the down-converted photons in the transverse-

momentum basis. The state |ψ2⟩ can also be represented in the Laguerre-Gaussian

(LG) basis [77, 124, 125, 32] as:

|ψ2⟩ =
∑
ls

∑
li

∑
ps

∑
pi

C ls,ps
li,pi

|ls, ps⟩s|li, pi⟩i. (3.7)

Here |ls, ps⟩s represents the state of the signal photon in the Laguerre-Gaussian

(LG) basis defined by the OAM-mode index ls and the radial index ps, etc. Using

Equations (3.6) and (3.7), the complex coefficients C ls,ps
li,pi

can be written as,

C ls,ps
li,pi

=

∫∫
Φ(qs, qi)LG

∗ls
ps (qs)LG

∗li
pi
(qi)dqsdqi. (3.8)

Here LGls
ps(qs) = ⟨qs|ls, ps⟩ is the momentum-basis representation of state |ls, ps⟩s

[77, 124]. Transforming to the cylindrical coordinates, we write C ls,ps
li,pi

as,

C ls,ps
li,pi

=

∫∫ ∞

0

∫∫ π

−π

Φ(ρs, ρi, ϕs, ϕi)LG
∗ls
ps (ρs, ϕs)LG

∗li
pi
(ρi, ϕi)ρsρidρsdρidϕsdϕi,

(3.9)

where qs ≡ (qsx, qsy) = (ρs cosϕs, ρs sinϕs), qi ≡ (qix, qiy) = (ρi cosϕi, ρi sinϕi),

dqs = ρsdρsdϕs, and dqi = ρidρidϕi. The probability P ls
li
, that the signal and idler

photons are detected with OAMs lsℏ and liℏ, respectively, is calculated by summing

over radial indices:

P ls
li

=
∞∑

ps=0

∞∑
pi=0

|C ls,ps
li,pi

|2. (3.10)
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Equations (3.9) and (3.10) were used in Refs. [77, 124, 125] for calculating the spectra

of OAM-entangled states. We note that in order to calculate the angular Schmidt

spectrum using the above formula one needs to first choose a beam waist for the

signal and idler LG bases in Equations (3.9) and then perform the summations in

Equation (3.10) over a sufficiently large number of modes. As a result, even for

certain collinear phase-matching conditions, in which the four-dimensional integral

can be analytically performed [124, 125], the above formula suffers from convergence

issues.

We now derive a formula for the angular Schmidt spectrum that neither requires

a beam waist to be chosen nor involves infinite summations and is applicable to both

collinear and non-collinear phase matching conditions. To this end, we first rewrite

Equation (3.10) using the relation LGls
ps(ρs, ϕs) = LGls

ps(ρs)e
ilsϕs , etc., as

P ls
li

=

∫∫∫∫ ∞

0

∫∫∫∫ π

−π

Φ(ρs, ρi, ϕs, ϕi)Φ
∗(ρ′s, ρ

′
i, ϕ

′
s, ϕ

′
i)

∞∑
ps=0

LG∗ls
ps (ρs)LG

ls
ps(ρ

′
s)

×
∞∑

pi=0

LG∗li
pi
(ρi)LG

li
pi
(ρ′i)e

+i(lsϕs+liϕi)e−i(lsϕ′
s+liϕ

′
i)ρsρiρ

′
sρ

′
idρsdρidρ

′
sdρ

′
i dϕsdϕidϕ

′
sdϕ

′
i.

(3.11)

We then use the identity
∑∞

p=0 LG
p
l (ρ)LG

∗p
l (ρ′) = (1/π)δ(ρ2 − ρ′2) over indices ps

and pi and obtain

P ls
li

=

∫∫∫∫ ∞

0

∫∫∫∫ π

−π

Φ(ρs, ρi, ϕs, ϕi)Φ
∗(ρ′s, ρ

′
i, ϕ

′
s, ϕ

′
i)

1

π2
δ(ρ2s − ρ′2s )δ(ρ

2
i − ρ′2i )

× e+i(lsϕs+liϕi)e−i(lsϕ′
s+liϕ

′
i)ρsρiρ

′
sρ

′
idρsdρidρ

′
sdρ

′
i dϕsdϕidϕ

′
sdϕ

′
i.

(3.12)

After evaluating the delta function integrals and rearranging the remaining terms,

we obtain

P ls
li

=
1

4π2

∫∫ ∞

0

∣∣∣ ∫∫ π

−π

Φ(ρs, ρi, ϕs, ϕi)e
i(lsϕs+liϕi)dϕsdϕi

∣∣∣2ρsρidρsdρi. (3.13)
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We can now compute the angular Schmidt spectrum Sl = P l
−l of two-photon states

produced from a Gaussian pump. Upon substituting ls = −li = l, which follows

from OAM conservation in PDC of a Gaussian pump, we obtain

Sl =
1

4π2

∫∫ ∞

0

∣∣∣ ∫∫ π

−π

Φ(ρs, ρi, ϕs, ϕi)e
il(ϕs−ϕi)dϕsdϕi

∣∣∣2ρsρidρsdρi. (3.14)

Equations (3.13) and (3.14) are the main theoretical results. Equation (3.13) pro-

vides a formula for calculating the probability P ls
li

that the signal and idler photons

are detected with OAMs lsℏ and liℏ, respectively for a general two-photon state.

Equation (3.14) calculates the angular Schmidt spectrum of two-photon states pro-

duced from a Gaussian pump. In contrast to the previously obtained formulas

[77, 124, 125, 127], Equations (3.13) and (3.14) neither require a beam waist to be

chosen nor involve infinite summations. As a result, these formulas can provide

improvement of several orders of magnitude in the spectrum computation time.

Moreover, unlike the non-collinear phase-matching results in Ref. [127], which is ap-

plicable only for a given pair of radial modes of the signal and idler photons, these

formulas are applicable to a generic set of non-collinear phase matching conditions

and geometries.

3.5 Experimental and theoretical characterizations

The experimental characterizations of angular Schmidt spectrum so far have suffered

from poor efficiency and stringent stability requirements [36, 37]. Note that from

Equation (3.5), we can compute the density matrices ρs = Tri (|ψ2⟩⟨ψ2|) and ρi =

Trs (|ψ2⟩⟨ψ2|) for the individual signal and idler photons by performing partial trace

operations on the two-photon state. We obtain

ρs =
∑
l

Sl|l⟩⟨l| and ρi =
∑
l

S−l|l⟩⟨l|. (3.15)
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Figure 3.1: Schematic of phase matching in PDC.

For a Gaussian pump, it is known that Sl = S−l, i.e, the angular Schmidt spectrum

is symmetric [77, 92]. Thus, the OAM spectrum of the one-photon signal-idler field

is identical to the angular Schmidt spectrum of the entangled two-photon state.

We shall now use the single-shot technique developed in Chapter 2 to measure the

angular Schmidt spectrum of entangled photons produced from type-I PDC of a

Gaussian pump.

3.5.1 Modeling the experiment

Let us consider the situation shown in Figure 3.1. A Gaussian pump beam undergoes

Type-I PDC inside a nonlinear crystal of thickness L. We take the pump photon to

be extra-ordinary polarized and the signal and idler photons to be ordinary polarized.

The beam waist of the pump field is located at a distance d behind the front surface

of the crystal. The crystal is rotated by an angle α with respect to the incident

direction of the pump beam, and the z-axis is defined to be the direction of the

refracted pump beam inside the crystal. The angles that the optic axes of the

unrotated and rotated crystals make with the pump beam inside the crystal are
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denoted by θp0 and θp, respectively. Using Figure 3.1, one can show that

θp = θp0 + sin−1 (sinα/ηp) , (3.16)

where ηp is the refractive index of the extraordinary pump photons. By changing

θp, one can go from collinear to non-collinear down-conversion. Note from Equa-

tion (3.4) and Equation (3.6) that

Φ(qs, qi) = AV (qs + qi, z = 0) sinc

(
∆kzL

2

)
exp

(
i
∆kzL

2

)
(3.17)

The spectral amplitude V (qp, z = −d) of the pump field at the beam waist location

z = −d is given by

V (qp, z = −d) = C exp

(
−
|qp|2w2

p

4

)
, (3.18)

where wp is the width of the beam at the wait location. The spectral amplitude

V (q
¯p
, z = 0) at the crystal location z = 0 is (see Appendix B. for the detailed

calculation)

V (qs + qi, z = 0) = C exp

(
−
|qs + qi|2w2

p

4

)
eikpzd, (3.19)

where C is a constant, kp is the magnitude of the pump wavevector. We have used

qp = qs + qi, which implies transverse momentum conservation in PDC.

Next, we obtain the expressions for ksz, kiz and kpz from Ref. [132] (a sign typo

in the expression for kpz in Ref. [132] has been corrected here. See Ref. [135] for the

detailed calculation):

ksz =

√
(2πnso/λs)

2 − |qs|2,

kiz =

√
(2πnio/λi)

2 − |qi|2, and

kpz = −αpqpx +
√
(2πηp/λp)

2 − β2
pq

2
px − γ2pq

2
py, (3.20)
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where

ηp = npeγp,

γp = npo/
√
n2
po sin

2 θp + n2
pe cos

2 θp,

αp =
(n2

po − n2
pe) sin θp cos θp

(n2
po sin

2 θp + n2
pe cos

2 θp)
,

and βp =
nponpe

(n2
po sin

2 θp + n2
pe cos

2 θp)
. (3.21)

Here nso denotes the ordinary refractive index of the signal photon at wavelength

λs, etc. We use the above relations to compute ∆kz. Then, we substitute ∆kz, and

V (qs+qi, z = 0) from Equation (3.19) into Equation (3.14) to calculate the angular

Schmidt spectrum. We note that the formula in Equation (3.14) represents angular

Schmidt spectrum just inside the nonlinear crystal. Nevertheless, in situations in

which α is of the order of only a few degrees, the angle of refraction is small so that

the angular Schmidt spectrum inside and outside the crystal can be regarded to be

the same.

3.5.2 Methods

We define the measured OAM spectrum as

S̄l ≡
∫ π

−π

∆Īout(ϕ)e
i2lϕdϕ, (3.22)

where ∆Īout(ϕ) = Īδcout(ϕ) − Īδdout(ϕ) is the difference in the azimuthal intensities

Īδcout(ϕ) and Īδdout(ϕ) of the two output interferograms recorded at δ = δc and δ =

δd, respectively, and where δ denotes the overall phase difference between the two

arms of the interferometer [115]. In the experimentally recorded interferograms,

there could be intensity noise due to stray light exposures, imperfections in optical

elements, etc. When the noise intensities in the two interferograms are the same,

it has been shown that the normalized measured OAM-spectrum S̄l is equal to the

true normalized OAM-spectrum Sl [32, 115].
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Figure 3.2: Experimental setup for measuring the angular Schmidt spectrum. BBO:
β-Barium Borate crystal; DM: Dichroic mirror; IF: 10-nm wavelength-bandwidth
interference filter; BS: beam splitter.

In the setup of Figure 3.2, an ultraviolet continuous-beam pump laser (100 mW)

of wavelength λp = 405 nm and beam-waist width wp = 388 µm was used to

produce Type-I PDC inside a β-barium borate (BBO) crystal. The beam waist of

the pump field was located at d = 100 cm behind the front surface of the crystal.

The crystal was mounted on a goniometer which was rotated in steps of 0.04 degrees

in order to change α and thereby θp. For a given setting of crystal and pump

parameters, output interferograms and thereby the azimuthal intensities Īδcout(ϕ) and

Īδdout(ϕ) were recorded for two values of δ, namely δc and δd, which differed by about

half a wavelength [115]. The recording of the interferograms was done using an

Andor Ixon Ultra EMCCD camera (512 × 512 pixels) with an acquisition time of

16 seconds. From a given pair of Īδcout(ϕ) and Īδdout(ϕ), ∆Īout(ϕ) was obtained and

the angular Schmidt spectrum was then estimated using Equation (3.22). In our

experiments, λs = λi = 810 nm, λp = 405 nm, and L = 2 mm. We have used the

following refractive index values taken from Ref. [136]: npo = 1.6923, npe = 1.5680

and nso = nio = 1.6611.
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Figure 3.3: (a), (b) The measured output interferograms at δ = δc and δ = δd,
respectively, (c) the difference ∆Ī(ϕ) in the azimuthal intensities of the two intefer-
ograms, (d) The normalized measured spectrum as computed using Equation (3.22)
and the normalized theoretical spectrum as calculated using Equation (3.13), for
α = 0.33 and θp =28.64. (e), (f), (g), (h) are the corresponding plots for α = 0.45
and θp =28.72. (i), (j), (k), (l) are the corresponding plots for α = 0.73 and
θp =28.89.

3.5.3 Experimental observations

Figure 3.3 shows the details of our measurements for three different values of θp.

For each θp, we have plotted the measured output interferograms at δ = δc and

δ = δd, the difference azimuthal intensity ∆Īout(ϕ) along with the normalized spec-

trum as computed using Equation (3.22) and the normalized theoretical spectrum

as calculated using Equation (3.14). The angular Schmidt number was calculated

using the formula Ka = 1/
(∑

l S̄
2
l

)
. The experimentally measured angular Schmidt

numbers along with the theoretical predictions at various θp values have been plot-

ted in Figure 3.4. We note that for our theoretical plots, θp0 was the only fitting

parameter, and once it was chosen, the subsequent θp values were calculated simply

by substituting the rotation angle α in Equation (3.16). We find that the angular
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Figure 3.4: (color online) Experimentally measured and theoretically estimated an-
gular Schmidt number Ka versus θp.

Schmidt spectrum becomes broader with increasing non-collinearity. We measured

very broad angular Schmidt spectra with the corresponding Schmidt numbers up to

229, which to the best of our knowledge is the highest ever reported angular Schmidt

number. We find excellent agreement between the theory and experiment, except

for extremely non-collinear conditions, in which case the experimentally measured

Schmidt numbers are slightly lower than the theoretical predictions. The main rea-

son for this discrepancy is the limited resolution of our EMCCD camera. In order

to generate the azimuthal intensity plots, we use a narrow angular region of interest

(ROI) [115], the minimum possible size of which is fixed by the pixel size of the

EMCCD camera. In the case of non-collinear down-conversion, the intensities in

the interferograms are concentrated at regions away from the center. Therefore,

the corresponding ∆Īout(ϕ) plots have lesser angular resolution and thus they get

estimated to be wider than their true widths. This results in a progressively lower

estimate of the Schmidt numbers with increasing non-collinearity.

3.5.4 Some numerical predictions

We use Equation (3.14) for studying how wp and L affect the angular Schmidt

number Ka. Figure 3.5(a) shows the theoretical dependence of Ka on wp for fixed

L, θp and d. Figure 3.5(b) shows the theoretical dependence of Ka on L for fixed
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Figure 3.5: (color online) (a) and (b) Theoretical dependence of the angular Schmidt
number on the width of the pump beam waist wp and crystal thickness L, respec-
tively.

wp, θp, and d. We find that Ka increases as a function of wp, while it decreases as a

function of L. Thus, in addition to θp, it is also possible to vary wp and L in order

to tune the angular Schmidt spectrum of the two-photon state from PDC.

3.6 Summary

In summary, we have derived in this chapter an exact formula for the angular

Schmidt spectrum of OAM-entangled photons produced by PDC. We have shown

that our formula yields the true theoretical spectrum without any convergence is-

sue as has been the case with the previously derived formulas. Furthermore, we

have used our theoretical formulation to experimentally characterize the angular

Schmidt spectrum for non-collinear phase matching in PDC. The results reported

in this chapter can be very relevant for the ongoing intensive research efforts towards

harnessing high-dimensional OAM entanglement for quantum information applica-

tions [137, 96].



Chapter 4

Polarization correlations in

parametric down-conversion

4.1 Introduction

The wave-particle duality, that is, the simultaneous manifestation of both particle

and wave behavior, is among the most characteristic features of a quantum system.

There are many processes in which a quantum system gets annihilated to produce

a new quantum system consisting of either equal or a higher number of particles.

An example is the nonlinear optical process of parametric down-conversion (PDC),

in which an input pump photon gets annihilated to produce two entangled photons

called the signal and idler photons [138]. Another example is the four-wave mixing

process, in which two input pump photons get annihilated to produce two new

photons [21]. In such processes, it is known that physical quantities such as energy,

momentum, and angular momentum are conserved [138, 36]. However, it is not very

well understood how in such processes the intrinsic correlations that constitute the

coherence of the annihilated quantum system get transferred to the generated new

quantum system.

One of the main difficulties in addressing questions related to the transfer of

correlations is the lack of a well-established basis-invariant measure for quantifying
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the intrinsic correlations in multi-dimensional systems in terms of a single scalar

quantity 1. For a one-particle quantum system with a two-dimensional Hilbert space,

the coherence of the system can be completely specified. For example, the coherence

of the two-dimensional polarization state of a one-photon system can be quantified

in terms of the degree of polarization [139, 3]. Two-photon systems have a four-

dimensional Hilbert space in the polarization degree of freedom and are described by

two-qubit states [33]. In the last several years much effort has gone into quantifying

the entanglement of the two-qubit states [17, 140, 141, 142, 89, 143, 18, 144], and

among the available entanglement quantifiers, Wootters’s concurrence [143, 18] is

the most widely used one.

In the context of signal-idler photons produced by PDC, the two-qubit polarization-

entangled states have been extensively studied [33, 34, 145] and are now seen to hold

a lot of promise for practical quantum-information protocols [146, 147]. However,

to the best of our knowledge, the correlations in the down-converted polarization-

entangled states have not been studied from the perspective of how these correlations

are dictated by the polarization correlations in the pump field. In degrees of free-

dom other than polarization, some aspects of how one-photon pump correlations

transfer to two-photon signal-idler correlations have previously been investigated

[28, 30, 31, 26, 148]. In particular, Ref. [30] studied correlation transfer in PDC

in the spatial degree of freedom. Although the spatial degree of freedom provides

an infinite dimensional basis, correlations in Ref. [30] were quantified in restricted

two-dimensional subspaces only. More specifically, the spatial correlations in the

pump field were quantified in terms of a spatial two-point correlation function; and

for quantifying spatial correlations of the signal and idler fields, spatial two-qubit

states with only two non-zero diagonal elements were considered. It was then shown

that the maximum achievable concurrence of spatial two-qubit states is bounded

by the degree of spatial correlations of the pump field. In this chapter, we study

1This problem was addressed subsequent to the work of this chapter by Ref.[86], which es-
tablishes a basis-invariant measure of coherence for finite-dimensional systems. In Chapter 6. of
this thesis, we generalize the measure of Ref.[86] to quantify the intrinsic coherence of infinite-
dimensional systems
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correlation transfer from one-photon to two-photon systems, not in any restricted

subspace, but in the complete space of the polarization degree of freedom. We quan-

tify intrinsic one-photon correlations in terms of the degree of polarization and the

two-photon correlations in terms of concurrence.

The contents of the chapter, which appear almost verbatim from Ref. [149], are

organized as follows. In Section 4.2, we present a brief description of the degree of

polarization, which will be used to quantify the intrinsic polarization correlations or

coherence of the pump photon in a basis-invariant manner. In Section 4.3, we briefly

describe the prescription to compute Wootters’ concurrence, a well-accepted mea-

sure of entanglement for arbitrary two-qubit states. In Section 4.4, we present the

most general bound on the concurrence of two-qubit polarization entangled states

produced from PDC in terms of the degree of polarization of the pump. Subse-

quently, in Section 4.5 we discuss the corresponding bound for two-qubit states

signal-idler that have only two non-zero diagonal elements in the computational ba-

sis. In Sec. 4.6, we discuss an example experimental setup in which a wide variety

of two-qubit states can be produced. By numerically varying different tunable pa-

rameter of the setup, we simulate a large number of two-qubit states, calculate the

corresponding concurrences and illustrate how the bounds derived in Section 4.4 and

Section 4.5 are obeyed. In Section 4.7 we present the conclusions of the chapter.

4.2 Degree of polarization of the pump photon

We begin by noting that the state of a normalized quasi-monochromatic pump field

may be described by a 2× 2 density matrix [3] given by

J =

⟨EH
E∗

H
⟩ ⟨E

H
E∗

V
⟩

⟨E∗
H
E

V
⟩ ⟨E

V
E∗

V
⟩

 , (4.1)

which is referred to as the ‘polarization matrix.’ The complex random variables E
H

and E
V
denote the horizontal and vertical components of the electric field, respec-
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tively, and ⟨· · · ⟩ denotes an ensemble average. By virtue of a general property of

2× 2 density matrices, J has a decomposition of the form,

J = P |ψpol⟩⟨ψpol|+ (1− P ) 1̄, (4.2)

where |ψpol⟩ is a pure state representing a completely polarized field, and 1̄ denotes

the normalized 2× 2 identity matrix representing a completely unpolarized field [3].

This means that any arbitrary field can be treated as a unique weighted mixture

of a completely polarized part and a completely unpolarized part. The fraction P

corresponding to the completely polarized part is called the degree of polarization

and is a basis-invariant measure of polarization correlations in the field. If we denote

the eigenvalues of J as ϵ1 and ϵ2, then it follows that P = |ϵ1− ϵ2| [3]. Furthermore,

the eigenvalues are connected to P as ϵ1 = (1 + P )/2 and ϵ2 = (1− P )/2.

4.3 Concurrence of the signal-idler photons

Concurrence is a measure of entanglement formulated by Wootters for quantify-

ing the entanglement of general two-qubit states [18]. While the concurrence does

not have any definite operational or physical interpretation, it is a well-accepted

measure of entanglement for two-qubit states. For a general two-qubit state ρ, the

concurrence is computed as

C(ρ) = max{0,
√
κ1 −

√
κ2 −

√
κ3 −

√
κ4}, (4.3)

where κi’s are the eigenvalues of the state ζ defined as

ζ = ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy). (4.4)

Here σy is the usual Pauli operator, and ρ∗ is the complex conjugate of ρ. For a

general ρ, we have 0 ≤ C(ρ) ≤ 1. If ρ is a maximally entangled state, then C(ρ) = 1,

whereas if ρ is a separable state then C(ρ) = 0. Our aim is to quantify the upper
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limit on the concurrence of the two-qubit signal-idler states in terms of the degree

of polarization P of the pump photon.

4.4 General upper bound

We now investigate the PDC-based generation of polarization entangled two-qubit

signal-idler states ρ from a quasi-monochromatic pump field J (see Figure 4.1).

The nonlinear optical process of PDC is a very low-efficiency process [21]. Most of

the pump photons do not get down-converted and just pass through the nonlinear

medium. Only a very few pump photons do get down-converted, and in our descrip-

tion, only these photons constitute the ensemble containing the pump photons. We

further assume that the probabilities of the higher-order down-conversion processes

are negligibly small so that we do not have in our description the down-converted

state containing more than two photons. With these assumptions, we represent the

state of the down-converted signal and idler photons by a 4 × 4, two-qubit density

matrix in the polarization basis {|H⟩s|H⟩i, |H⟩s|V ⟩i, |V ⟩s|H⟩i, |V ⟩s|V ⟩i}. In what

follows, we will be applying some results from the theory of majorization [150] in

order to study the propagation of correlations from the 2× 2 pump density matrix

J to the 4× 4 two-qubit density matrix ρ. This requires us to equalize the dimen-

sionalities of the pump and the two-qubit states. We therefore represent the pump

field by a 4× 4 matrix σ, where

σ ≡

 1 0

0 0

⊗ J. (4.5)

We denote the eigenvalues of σ in non-ascending order as {ϵ1, ϵ2, ϵ3, ϵ4) ≡ ((1 + P )/2

,(1− P )/2, 0, 0} and the eigenvalues of ρ in non-ascending order as {λ1, λ2, λ3, λ4}.

Let us represent the two-qubit generation process σ → ρ by a completely positive

map E (see Figure 4.1) such that ρ = E(σ) =
∑

iMiσM
†
i , where Mi’s are the

Sudarshan-Kraus operators for the process [16, 151, 152, 153]. We restrict our
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analysis only to maps that satisfy the following two conditions for all σ: (i) No

part of the system can be discarded, that is, there must be no postselection. This

means that the map must be trace-preserving, which leads to the condition that∑
iM

†
iMi = 1; (ii) Coherence may be lost to, but not gained from degrees of freedom

external to the system. In other words, the von Neumann entropy cannot decrease.

This condition holds if and only if the map is unital, that is,
∑

iMiM
†
i = 1. The

above two conditions together imply that the process σ → ρ is doubly-stochastic

[154]. The characteristic implication of double-stochasticity is that the two-qubit

state is majorized by the pump state, that is ρ ≺ σ. This means that the eigenvalues

of ρ and σ satisfy the following relations:

λ1 ≤ ϵ1, (4.6a)

λ1 + λ2 ≤ ϵ1 + ϵ2, (4.6b)

λ1 + λ2 + λ3 ≤ ϵ1 + ϵ2 + ϵ3, (4.6c)

λ1 + λ2 + λ3 + λ4 = ϵ1 + ϵ2 + ϵ3 + ϵ4. (4.6d)

We must note that condition (i) may seem not satisfied in some of the experimental

schemes for producing polarization entangled two-qubit states. For example, in the

scheme for producing a polarization Bell state using Type-II phase-matching [33],

only one of the polarization components of the pump photon is allowed to engage

in the down-conversion process; the other polarization component, even if present,

simply gets discarded away. Nevertheless, our formalism is valid even for such two-

qubit generation schemes. In such schemes, the state σ represents that part of the

pump field which undergoes the down-conversion process so that condition (i) is

satisfied.

Now, for a general realization of the process σ → ρ, the generated density ma-

trix ρ can be thought of as arising from a process N , that can have a non-unitary

part, followed by a unitary-only process U , as depicted in Figure 4.1. This means

that we have σ → χ ≡ N (σ) → ρ ≡ U(χ). The process N generates the two-
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Figure 4.1: Modelling the generation of two-qubit states ρ from σ through a doubly
stochastic process.

qubit state χ with eigenvalues {λ1, λ2, λ3, λ4} which are different from the eigenval-

ues {ϵ1, ϵ2, ϵ3, ϵ4} of σ, except when N consists of unitary-only transformations, in

which case the eigenvalues of χ remain the same as those of σ. The unitary part U

transforms the two-qubit state χ to the final two-qubit state ρ. This action does not

change the eigenvalues but can change the concurrence of the two-qubit state. The

majorization relations of Equation (4.6) dictate how the two sets of eigenvalues are

related and thus quantify the effects due to N . We quantify the effects due to U by

using the result from Refs. [155, 156, 89] for the maximum concurrence achievable

by a two-qubit state under unitary transformations. According to this result, for a

two-qubit state ρ with eigenvalues in non-ascending order denoted as λ1, λ2, λ3, λ4,

the concurrence C(ρ) obeys the inequality:

C(ρ) ≤ max{0, λ1 − λ3 − 2
√
λ2λ4}; (4.7)

the bound is saturable in the sense that there always exists a unitary transformation

U(χ) = ρ for which the equality holds true [156]. Now, from Equation (4.7), we

clearly have C(ρ) ≤ λ1. And, from the majorization relation of Equation (4.6a), we

find that λ1 ≤ ϵ1 = (1+P )/2. Therefore, for a general doubly-stochastic process E ,

we arrive at the inequality:

C(ρ) ≤ 1 + P

2
. (4.8)

We stress that this bound is tight, in the sense that there always exists a pair of N

and U for which the equality in the above equation holds true. In fact, the saturation

of Equation (4.8) is achieved when N consists of unitary-only process and when U
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is such that it yields the maximum concurrence for ρ as allowed by Equation (4.7).

This can be verified, first, by noting that when N is unitary the process χ = N (σ)

preserves the eigenvalues to yield (λ1, λ2, λ3, λ4) = ((1 + P )/2, (1− P )/2, 0, 0), and

second, by substituting these eigenvalues in Equation (4.7) which then yields (1 +

P )/2 as the maximum achievable concurrence. Equation (4.8) is the central result

of this chapter which clearly states that the intrinsic polarization correlations of the

pump field in PDC predetermine the maximum entanglement that can be achieved

by the generated two-qubit signal-idler states. We note that while Equation (4.8) has

been derived keeping in mind the physical context of parametric down-conversion,

the derivation does not make any specific reference to the PDC process or to any

explicit details of the two-qubit generation scheme. As a result, Equation (4.8) is

also applicable to processes other than PDC that would produce a two-qubit state

from a single source qubit state via a doubly stochastic process.

4.5 Restricted bound for 2D states

We now recall that our present work is directly motivated by previous studies in

the spatial degree of freedom for two-qubit states with only two nonzero diagonal

entries in the computational basis [30]. Therefore, we next consider this special class

of two-qubit states in the polarization degree of freedom. We refer to such states as

‘2D states’ in this chapter and represent the corresponding density matrix as ρ(2D).

Since such states can only have two nonzero eigenvalues, the majorization relations

of Equation (4.6) reduce to: λ1 ≤ ϵ1 and λ1 + λ2 = ϵ1 + ϵ2 = 1. Owing to its 2× 2

structure, the state ρ(2D) has a decomposition of the form [3],

ρ(2D) = P̃ |ψ(2D)⟩⟨ψ(2D)|+ (1− P̃ )1̄(2D), (4.9)

where |ψ(2D)⟩ is a pure state and 1̄(2D) is a normalized 2 × 2 identity matrix. As

in Equation (4.2), the pure state weightage P̃ can be shown to be related to the

eigenvalues as P̃ = λ1 − λ2. It is known that the concurrence is a convex function
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on the space of density matrices [18], that is, C(
∑

i piρi) ≤
∑

i piC(ρi), where 0 ≤

pi ≤ 1 and
∑

i pi = 1. Applying this property to Equation (4.9) along with the

fact that C(1̄(2D)) = 0, we obtain that the concurrence C(ρ(2D)) of a 2D state

satisfies C(ρ(2D)) ≤ P̃ . Now since P̃ = λ1 − λ2 = 2λ1 − 1, and λ1 ≤ ϵ1, we get

P̃ ≤ 2ϵ1 − 1 = ϵ1 − ϵ2 = P , or P̃ ≤ P . We therefore arrive at the inequality,

C(ρ(2D)) ≤ P. (4.10)

Thus, for 2D states the upper bound on concurrence is the degree of polarization

itself. This particular result is in exact analogy with the result shown previously for

2D states in the spatial degree of freedom that the maximum achievable concurrence

is bounded by the degree of spatial correlations of the pump field itself [30].

Our entire analysis leading upto Equation (4.8) and Equation (4.10) describes

the transfer of one-particle correlations, as quantified by P , to two-particle corre-

lations and their eventual manifestation as entanglement, as quantified by concur-

rence. For 2D states, which have a restricted Hilbert space available to them, the

maximum concurrence that can get manifested is P . Thus, restricting the Hilbert

space appears to restrict the degree to which pump correlations can manifest as

the entanglement of the generated two-qubit state. However, when there are no

restrictions on the available Hilbert space, the maximum concurrence that can get

manifested is (1+P )/2. This leads to the somewhat non-intuitive consequence that

even an unpolarized pump field (P = 0) can produce two-qubit states with non-zero

concurrence (upto C(ρ) = 0.5). This is attributed to the fact that the one-particle

correlations of the pump field are allowed to manifest in the full unrestricted Hilbert

space of the two-particle state of the signal-idler photons. We note that our general

result as derived in Equation (4.8) remains applicable even in situations where the

entanglement in a generated two-qubit state is transferred to another two-qubit state

[157, 158, 159, 160] or where a two-qubit state is made to go through a turbulent

atmosphere [161]. As long as the trace-preserving and entropy non-decreasing con-

ditions are satisfied the upper bound on entanglement in such transfers still remain
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Figure 4.2: (a) An example experimental scheme for producing a wide range of
two-qubit states. BS: beam-splitter, PR: phase retarder, RP: rotation plate, HP:
half-wave plate; Ds and Di are photon detectors in a coincidence-counting setup.
(b) and (c) are the scatter plots of concurrences of states numerically generated by
randomly varying all the tunable parameters. (d) and (e) are the scatter plots of
concurrence of 2D states, numerically generated by keeping t = 1 and varying all
the remaining tunable parameters.

dictated by Equation (4.8).

4.6 An illustrative experimental scheme

We now illustrate the bounds derived in this chapter in an example experimental

scheme. The scheme shown in Figure 4.2(a) can produce a wide range of two-qubit

states in a doubly-stochastic manner. A pump field with the degree of polarization
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P is split into two arms by a non-polarizing beam-splitter (BS) with splitting ratio

t : 1 − t. We represent the horizontal and vertical polarization components of the

field hitting the PDC crystals in arm (1) as EH1 and EV 1, respectively. The phase

retarder (PR1) introduces a phase difference α1 between EH1 and EV 1. The rotation

plate (RP1) rotates the polarization vector by angle θ1. The corresponding quan-

tities in arm (2) have similar representations. The stochastic variable γ introduces

a decoherence between the pump fields in the two arms. Its action is described

as ⟨eiγ⟩ = µ eiγ0 , where ⟨· · · ⟩ represents the ensemble average, µ is the degree of

coherence and γ0 is the mean value of γ [3]. The entangled photons in each arm

are produced using type-I PDC in a two-crystal geometry [34]. The purpose of

the half-wave plate (HP) is to convert the two-photon state vectors |H⟩s|H⟩i and

|V ⟩s|V ⟩i, into |V ⟩s|H⟩i and |H⟩s|V ⟩i, respectively. Therefore, a typical realization

|ψγ⟩ of the two-qubit state in the ensemble detected at Ds and Di can be repre-

sented as |ψγ⟩ = EV 1|H⟩s|H⟩i + EH1|V ⟩s|V ⟩i + eiγ (EV 2|H⟩s|V ⟩i + EH2|V ⟩s|H⟩i).

The two-qubit density matrix is then ρ = ⟨|ψγ⟩⟨ψγ|⟩ =



⟨EV 1E
∗
V 1⟩ ⟨EV 1E

∗
V 2e

−iγ⟩ ⟨EV 1E
∗
H2e

−iγ⟩ ⟨EV 1E
∗
H1⟩

⟨EV 2E
∗
V 1e

iγ⟩ ⟨EV 2E
∗
V 2⟩ ⟨EV 2E

∗
H2⟩ ⟨EV 2E

∗
H1e

iγ⟩

⟨EH2E
∗
V 1e

iγ⟩ ⟨EH2E
∗
V 2⟩ ⟨EH2E

∗
H2⟩ ⟨EH2E

∗
H1e

iγ⟩

⟨EH1E
∗
V 1⟩ ⟨EH1E

∗
V 2e

−iγ⟩ ⟨EH1E
∗
H2e

−iγ⟩ ⟨EH1E
∗
H1⟩


.

For calculating the matrix elements of ρ, we represent the polarization vector of the

pump field before the BS as (EH , EV )
T and thus write EH1 and EV 1 as

EH1

EV 1

=η1
 cos θ1 sin θ1

− sin θ1 cos θ1


1 0

0 eiα1


EH

EV

 , (4.11)

where η1 =
√
t, and the two matrices represent the transformations by PR1 and

RP1. EH2 and EV 2 are calculated in a similar manner, with the corresponding

quantity η2 =
√
1− t eiγ. Without the loss of generality, we assume ⟨E∗

HEH⟩ =
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⟨E∗
VEV ⟩ = 1/2 and ⟨E∗

HEV ⟩ = P/2, and calculate the matrix elements to be

⟨EV 1(2)E
∗
V 1(2)⟩ = |η1(2)|2

(
1− P cosα1(2) sin 2θ1(2)

)
/2,

EH1(2)E
∗
H1(2)⟩ = |η1(2)|2

(
1 + P cosα1(2) sin 2θ1(2)

)
/2,

⟨EV 1(2)E
∗
H1(2)⟩ = |η1(2)|2 P

(
cosα1(2)cos 2θ1(2) + i sinα1(2)

)
/2,

⟨EV 1E
∗
V 2e

−iγ⟩ = µ|η1η2|
(
sin θ1 sin θ2 + cos θ1 cos θ2e

i(α1−α2)

− P cos θ1 sin θ2e
iα1 − P sin θ1 cos θ2e

−iα2
)
e−iγ0/2,

⟨EV 1E
∗
H2e

−iγ⟩ = µ|η1η2|
(
− sin θ1 cos θ2 + cos θ1 sin θ2e

i(α1−α2)

+ P cos θ1 cos θ2e
iα1 − P sin θ1 sin θ2e

−iα2
)
e−iγ0/2,

⟨EV 2E
∗
H1e

iγ⟩ = µ|η1η2|
(
− cos θ1 sin θ2 + sin θ1 cos θ2e

−i(α1−α2)

− P sin θ1 sin θ2e
−iα1 + P cos θ1 cos θ2e

iα2
)
eiγ0/2,

⟨EH2E
∗
H1e

iγ⟩ = µ|η1η2|
(
cos θ1 cos θ2 + sin θ1 sin θ2e

−i(α1−α2)

+ P sin θ1 cos θ2e
−iα1 + P cos θ1 sin θ2e

iα2
)
eiγ0/2.

Here, t, α1, α2, θ1, θ2, µ, and γ0 are the tunable parameters. We numerically vary

these parameters with a uniform random sampling and simulate a large number of

two-qubit states. Figure 4.2(b) and Figure 4.2(c) are the scatter plots of concur-

rences of 5 × 103 and 5 × 106 two-qubit states, respectively, numerically generated

by varying all the tunable parameters. Figure 4.2(d) and Figure 4.2(e) are the scat-

ter plots of concurrence of 5× 103 and 5× 106 2D states, respectively, numerically

generated by keeping t = 1 and varying all the remaining tunable parameters. The

solid black lines are the general upper bound C(ρ) = (1 + P )/2 and the dashed

black lines are the upper bound C(ρ) = P for 2D states. The unfilled gaps in the

scatter plots can be filled in either by sampling more data points or by adopting

a different sampling strategy. To this end, we note that one possible setting for

which the general upper bound C(ρ) = (1 + P )/2 can be achieved for any value of

P is: t = 0.5, θ1 = −π/4, θ2 = 0, α1 = π/2, α2 = π, µ = 1 and γ0 = 0. Thus, even

an unpolarized pump field (P = 0) can be made to produce two-qubit signal-idler
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states with non-zero entanglement (upto C(ρ) = 0.5) by a suitable choice of the

tunable parameters. This is due to the fact that the setup is capable of producing

a wide variety of two-qubit states, which in general, reside in the full unrestricted

four-dimensional Hilbert space.

4.7 Summary

In summary, we have investigated how one-particle correlations transfer to manifest

as two-particle correlations in the physical context of PDC.We have shown that if the

generation process is trace-preserving and entropy-nondecreasing, the concurrence

C(ρ) of the generated two-qubit state ρ follows an intrinsic upper bound with C(ρ) ≤

(1+P )/2, where P is the degree of polarization of the pump photon. For the special

class of two-qubit states ρ(2D) that is restricted to have only two nonzero diagonal

elements, the upper bound on concurrence is the degree of polarization itself, that is,

C(ρ(2D)) ≤ P . The surplus of (1+P )/2−P = (1−P )/2 in the maximum achievable

concurrence for arbitrary two-qubit states can be attributed to the availability of

the entire 4 × 4 computational space, as opposed to 2D states which only have a

2× 2 computational block available to them.

We note that the polarization correlations of a pump field do not impose serious

limitations on the degree of entanglement of the signal and idler photons, insofar

as its practical achievability in realistic experiments is concerned. The main mo-

tivation behind this study is from the fundamental perspective of understanding

how one-particle correlations transfer to manifest as two-particle correlations. The

results derived in this chapter can have two important implications. The first one is

towards exploring whether correlations too follow a quantifiable conservation princi-

ple just as physical observables such as energy and momentum do. The second one

could be towards deducing the upper bound on the correlations in a generated high-

dimensional quantum system, purely from the knowledge of the correlations in the

source. In light of the recent experiment on generation of three-photon entangled

states from a single source photon [162], this formalism may prove useful in deter-
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mining upper bounds on the entanglement of such multipartite systems, for which

no well-accepted measure exists. We believe that this approach based on intrinsic

source correlations could complement the existing information-theoretic approaches

[17, 140, 141, 142, 89, 143, 18, 144] towards quantifying entanglement.



Chapter 5

Temporal correlations in

parametric down-conversion

5.1 Introduction

Coherence and entanglement are intimately related concepts. The recent attempts

at developing a resource-based theory of coherence also reveal such relations [163,

164, 165, 166]. One of the physical processes in which the relations between coher-

ence and entanglement can be systematically explored is parametric down-conversion

(PDC)—a nonlinear optical process in which a pump photon interacts with a non-

linear crystal to produce a pair of entangled photons, termed as signal and idler

[138]. Using the PDC photons, coherence and entanglement effects have been

observed in several degrees of freedom including polarization [167], time-energy

[41, 168, 169, 170, 28, 42, 171, 172, 35, 173], position and momentum [27, 174, 30],

and orbital angular momentum (OAM) [175, 31, 37, 32].

There have been several studies on how coherence and entanglement properties

of the down-converted field are affected by different PDC setting and pump field

parameters [22, 23, 26, 176, 177, 27, 178]. However, regarding how the intrinsic

correlations of the pump field get transferred to manifest as two-photon coherence

and entanglement, there have been efforts mostly in the polarization and spatial
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degrees of freedom [26, 179, 30, 149]. In the spatial degree of freedom, a general

spatially partially coherent field was considered and it was shown that the spatial

coherence properties of the pump field get entirely transferred to that of the down-

converted two-photon field [30]. However, in the temporal degree of freedom, the

effects due to the temporal correlations of the pump field have only been studied

in two limiting situations: one, in which the constituent frequency components are

completely correlated (fully-coherent pulsed field) [24, 25, 35, 180, 181] and the

other, in which the constituent frequency components are completely uncorrelated

(continuous-wave field) [41, 168, 169, 170, 28, 42, 171, 172, 134, 182, 183, 184, 185].

In this chapter, we study the coherence transfer in PDC for a general temporally

partially coherent pump field and explicitly quantify this correlation transfer for

the special case of a partially coherent Gaussian Schell-model field [186], in which

the correlations between the constituent frequency components have a Gaussian

distribution.

The contents of this chapter, which appear almost verbatim from Ref. [187], are

organized as follows. In Section 5.2, we describe a general model of two-photon

interference in terms of two time parameters. In Section 5.4, we show that the

temporal coherence properties of a general pump get entirely transferred to the

down-converted two-photon field. Specifically, we derive the two-photon temporal

coherence functions for both infinitely-fast and time-averaged detection schemes

and show that in each scheme the coherence function factorizes into two separate

coherence functions with one of them carrying the entire statistical information

of the pump field. In Section 5.5, we derive the explicit form of the two-photon

coherence function for a Gaussian-Schell pump field. In Section 5.6, we show that

the entanglement of time-energy entangled two-qubit states is bounded by the degree

of temporal coherence of the partially coherent pump field. Finally, in Section 5.7

we present the conclusions of our study.
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Figure 5.1: Schematic representation of two-photon interference using the two-
photon path diagrams. A pump photon has two alternatives 1 and 2 through which
it can be annihilated to produce photon pairs which pass through filters Fs and Fi

and are detected in coincidence at detectors Ds and Di.

5.2 Understanding two-photon interference using

path diagrams

Alternatives 1 and 2 are the two pathways by which a pump photon is down-

converted and the down-converted signal and idler photons are detected in coinci-

dence at single-photon detectors Ds and Di, respectively. There are six independent

time parameters in this setting. The subscripts p, s and i denote the pump, signal

and idler respectively. We adopt the convention that a signal photon is the one that

arrives at detector Ds while an idler photon is the one that arrives at detector Di.

The symbol τ denotes the traversal time of a photon while ϕ denotes the phase,

other than the dynamical phase, accumulated by a photon. Thus, τs1 denotes the

traversal time of the signal photon in alternative 1, etc. The various signal, idler

and pump quantities are used to define the following parameters:

∆τ ≡ τ1 − τ2 ≡
(
τp1 +

τs1 + τi1
2

)
−
(
τp2 +

τs2 + τi2
2

)
,

∆τ ′ ≡ τ ′1 − τ ′2 ≡
(
τs1 − τi1

2

)
−
(
τs2 − τi2

2

)
,

∆ϕ ≡ ϕ1 − ϕ2 ≡ (ϕp1 + ϕs1 + ϕi1)− (ϕp2 + ϕs2 + ϕi2) . (5.1)
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pump

signal

idler

Figure 5.2: The pump photon starts interacting with a crystal of thickness L at
time t′ = −tint. The interaction continues till t′ = 0 at which the the signal and
idler photons are emitted from the crystal.

The parameters defined above are identical to those defined in Ref. [28], except for

τ ′1, τ
′
2 and ∆τ ′, which have been scaled down by a factor of 2. It is found that this

rescaling imparts the equations in this chapter a neat and symmetric form.

5.3 Two-photon state produced from PDC

We present the derivation of the form of the two-photon state in the temporal

degree of freedom as presented previously in Refs. [29, 134, 188, 24]. In Chapter

1, we described the basic physics of PDC and derived the expression 1.25 for the

effective Hamiltonian operator for PDC which is given by

Ĥ(t′) =
ϵ0
2

∫
V

d3rχ(2)Ê(+)
p (r, t′)Ê(−)

s (r, t′)Ê
(−)
i (r, t′) + H.c. (5.2)

Recall that V is the volume of the interaction region in the crystal and χ(2) is

the second-order nonlinear susceptibility of the crystal medium. As depicted in

Figure 5.2, let us assume that the pump photon starts interacting with the crystal

at t′ = −tint and gets annihilated by t′ = 0 to generate the signal and idler photons.

We further assume that the crystal is embedded in a passive linear medium with

suitable refractive index so that we can neglect refraction effects at the air-crystal

interface [22, 26].

We will now derive a simplified form of the Hamiltonian that focuses on the
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temporal characteristics of the pump and signal-idler photons. We assume that

the transverse area of the crystal is very large. Moreover, in a typical two-photon

interference experiment, pinholes are placed to ensure that the transverse wave-

vectors qs and qi are perfectly phase-matched such that qs + qi = qp, where kp ≡

(qp, kpz),ks ≡ (qs, ksz) and ki ≡ (qi, kiz) are the wave-vectors for the pump, signal

and idler photons, respectively. Incorporating these assumptions, it can be shown

that the effective Hamiltonian for PDC is given by

Ĥ(t′) =
ϵ0
2

∫ 0

−L

dzχ(2)Ê(+)
p (z, t′)Ê(−)

s (z, t′)Ê
(−)
i (z, t′) + H.c, (5.3)

where L is the thickness of the crystal. In most experiments, the pump field is

sufficiently intense and may therefore be treated classically. The electric fields can

be expanded as

Ê(+)
p (z, t′) =

∫ ∞

0

dωpApV (ωp)e
i(kpz(ωp)z−ωpt′)ei(ωpτp+ϕp), (5.4a)

Ê(−)
s (z, t′) =

∫ ∞

0

dωsA
∗
sâ

†
s(ωs)e

−i(ksz(ωs)z−ωst′), (5.4b)

Ê
(−)
i (z, t′) =

∫ ∞

0

dωiA
∗
i â

†
i (ωi)e

−i(kiz(ωi)z−ωit
′). (5.4c)

Here Ap, As and Ai are scaling factors which vary slowly in the frequency range of

experimental interest and can be taken to be constants. The function V (ωp) is the

complex spectral amplitude of the pump field at frequency ω, and the phase factor

ei(ωpτp+ϕp) has been included to incorporate phase changes in the pump photon in

its propagation before interacting with the crystal. Here τp represents the traversal

time of the pump photon, and ϕp is the net non-dynamical phase (such as geo-

metric phase) that it acquires during propagation. Substituting Equations (5.4) in

Equation (5.3), we obtain

Ĥ(t′) =
ϵ0χ

(2)ApA
∗
sA

∗
i

2

∫ 0

−L

dz

∫∫∫ ∞

0

dωpdωsdωiV (ωp)â
†
s(ωs)â

†
i (ωi)e

i(ωs+ωi−ωp)t′

× ei[kpz(ωp)−ksz(ωs)−kiz(ωi)]z +H.c. (5.5)
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At time t′ = −tint, there are no photons in the signal and idler modes. Therefore,

the state of the field is given by |ψ(−tint) = |vac⟩s|vac⟩i, which denotes the vacuum

state. The state |ψ(0)⟩ at time t′ = 0 at the end of the interaction can be computed

using Schrodinger’s equation as

|ψ(0)⟩ = exp

[
1

iℏ

∫ 0

−tint

dt′Ĥ(t′)

]
|ψ(t′ = tint)⟩. (5.6)

In most experiments, the PDC interaction is sufficiently weak so that the above

equation can be approximated by the first two terms of a perturbative expansion.

The first term is the vacuum state which does not contribute to photon detections

can be ignored. The second term correspond to the two-photon state |ψ⟩ is given

by

|ψ⟩ = ϵ0χ
(2)ApA

∗
sA

∗
i

2iℏ

∫ 0

−tint

dt′
∫ 0

−L

dz

∫∫∫ ∞

0

dωpdωsdωiV (ωp)e
i(ωs+ωi−ωp)t′

× ei[kpz(ωp)−ksz(ωs)−kiz(ωi)]zâ†s(ωs)â
†
i (ωi)|vac⟩s|vac⟩i. (5.7)

Note that only the first term in the Hamiltonian has contributed to generating the

above state. The contribution from its Hermitian conjugate vanishes identically.

We now assume that the interaction time tint is significantly large compared

to the time-scale over which PDC takes place in the medium. As a result, the

integration over the time variable t′ can be performed over the entire range from

negative to positive infinity to yield δ(ωp − ωs − ωi). We perform the integration

over the pump frequency to obtain

|ψ⟩ = A

∫∫
dωsdωiV (ωp)Φ(ωs, ωi)e

i(ωpτp+ϕp)|ωs⟩s|ωi⟩i, (5.8)

where A is a constant and Φ(ωs, ωi) is called the phase-matching function, and is

given by

Φ(ωs, ωi) =

∫ 0

−L

dzei[kpz(ωp)−ksz(ωs)−kiz(ωi)]z. (5.9)
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The form of the phase-matching function is determined by the crystal parameters

such as refractive indices for the different fields and polarizations, length and orien-

tation of the crystal with respect to the pump, etc. We now study the transfer of

temporal correlations from the pump to the two-photon state.

5.4 Transfer of temporal coherence in PDC

5.4.1 Detection with infinitely fast detectors

We follow the formalism worked out in Ref. [28] and represent a general two-

alternative two-photon interference of the PDC photons by the two-photon path

diagrams shown in Figure 5.1. The pump is a general temporally partially coher-

ent field. The two-photon state |ψ⟩1 produced in alternative 1 in the weak down-

conversion limit is given by [134, 24]:

|ψ⟩1 = A1

∫∫
dωsdωiV (ωp)Φ1(ωs, ωi)e

i(ωpτp1+ϕp1)|ωs⟩ωs1|ωi⟩ωi1
, (5.10)

where Φ1(ωs, ωi) is the phase-matching function in alternative 1. The two-photon

state |ψ⟩2 in alternative 2 can be similarly defined. The complete two-photon state

|ψ⟩ at the detectors is the sum of the two-photon states in alternatives 1 and 2 and

can be written as |ψ⟩ = |ψ⟩1+ |ψ⟩2. The corresponding density matrix ρ of the state

at the detectors is therefore:

ρ̂ =
⟨
|ψ⟩⟨ψ|

⟩
. (5.11)

Here ⟨· · · ⟩ represents an ensemble average over infinitely many realizations of the

two-photon state.

We now denote the positive frequency parts of the electric fields at detectors Ds

and Di by Ê
(+)
s (t) and Ê

(+)
i (t), respectively, and write them as

Ê(+)
s (t) = κs1Ê

(+)
s1 (t− τs1) + κs2Ê

(+)
s2 (t− τs2), (5.12a)

Ê
(+)
i (t) = κi1Ê

(+)
i1 (t− τi1) + κi2Ê

(+)
i2 (t− τi2), (5.12b)
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where κs1(2) and κi1(2) are scalar amplitudes and where

Ê
(+)
s1 (t− τs1) = eiϕs1

∫ ∞

0

dωfs1(ω − ωs0)âs1(ω)e
−iω(t−τs1), (5.13)

is the positive frequency parts of the electric field at detector Ds in alternative 1,

etc. The function fs1(ω − ωs0) is the amplitude transmission function of the filter

Fs placed at detector Ds, etc. The filters Fs and Fi are centered at frequencies ωs0

and ωi0, respectively, and we assume the phase-matching condition ωp0 = ωs0 + ωi0,

where ωp0 is the central frequency of the pump field V (ωp). The coincidence count

rate R
(2)
si (ts, ti) of the two detectors is the probability per (unit time)2 that a signal

photon is detected at time ts and the corresponding idler photon is detected at time

ti, and it is given by R
(2)
si (ts, ti) = Tr{ρ̂ Ê(−)

s (ts) Ê
(−)
i (ti)Ê

(+)
i (ti) Ê

(+)
s (ts)} [4]. Using

the definitions and expressions of Equations (5.1)-(5.13), we evaluate R
(2)
si (ts, ti) to

be

R
(2)
si (ts, ti) = κ21R

(2)(ts, ti, τs1, τi1) + κ22R
(2)(ts, ti, τs2, τi2)

×+κ1κ2Γ
(2)(ts, ti, τs1, τi1, τs2, τi2)e

−i∆ϕ + c.c., (5.14a)

where κ1 = κs1κi1, κ2 = κs2κi2,

Γ(2)(ts, ti, τs1, τi1, τs2, τi2) = Tr
{
ρ̂ Ê

(−)
s1 (ts−τs1)Ê(−)

i1 (ti−τi1)Ê(+)
i2 (ti−τi2)Ê(+)

s2 (ts−τs2)
}
,

(5.14b)

and

R(2)(ts, ti, τs1, τi1) = Γ(2)(ts, ti, τs1, τi1, τs1, τi1). (5.14c)

Equation (5.14) is the interference law for the two-photon field. The first and the

second terms are the coincidence count rates in alternatives 1 and 2, respectively.

The interference term Γ(2)(ts, ti, τs1, τi1, τs2, τi2) appears when both the alternatives

are present, and it will be referred to as the two-photon cross-correlation function

of the down-converted field. We now make the assumption that the spectral width
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∆ωp0 of the pump field is much smaller than the central frequency ωp0 and the

spectral widths of the phase-matching functions and filter functions. As a result,

the phase-matching and filter functions can be taken to be approximately constant in

the frequency range (ωp0 −∆ωp0/2, ωp0 +∆ωp0/2). This assumption remains valid

for most PDC experiments employing continuous wave pump field [41, 168, 169,

170, 28, 42, 171, 172, 185] and pulsed pump field [24, 25, 35, 180, 181] and may only

be invalid for experiments employing ultrashort pulsed pump fields [189, 190, 191].

We use the relations ωp = ωs + ωi, ωd = ωs − ωi, ωp0 = ωs0 + ωi0, ωd0 = ωs0 − ωi0

and define the integration variables ω̄p = ωp − ωp0 and ω̄d = ωd − ωd0. Using

Equations (5.1)-(5.14), we obtain after a long but straightforward calculation:

Γ(2)(ts, ti, τs1, τi1, τs2, τi2) = Γp

(
τ1 −

ts + ti
2

, τ2 −
ts + ti

2

)
× Γd

(
τ ′1 −

ts − ti
2

, τ ′2 −
ts − ti

2

)
, (5.15)

where,

Γp

(
τ1 −

ts + ti
2

, τ2 −
ts + ti

2

)
= e−iωp0∆τ

∫∫
dω̄′

pdω̄
′′
p

⟨
V ∗(ω̄′

p + ωp0)V (ω̄′′
p + ωp0)

⟩
× exp

[
−iω̄′

p

(
τ1 −

ts + ti
2

)]
exp

[
iω̄′′

p

(
τ2 −

ts + ti
2

)]
, (5.16)

and,

Γd

(
τ ′1 −

ts − ti
2

, τ ′2 −
ts − ti

2

)
= e−iωd0∆τ ′

∫∫
dω̄′

ddω̄
′′
d ⟨g∗1(ω̄′

d) g2(ω̄
′′
d)⟩

× exp

[
−iω̄′

d

(
τ ′1 −

ts − ti
2

)]
exp

[
iω̄′′

d

(
τ ′2 −

ts − ti
2

)]
, (5.17)

with

g1(ω) = Φ1

(
ωs0 +

ω

2
, ωi0 −

ω

2

)
fs1

(ω
2

)
fi1

(
−ω
2

)
,

etc. The ensemble average
⟨
V ∗(ω̄′

p + ωp0)V (ω̄′′
p + ωp0)

⟩
is the cross-spectral den-
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sity function of the pump field. It is at once clear from Equation (5.16) that

the coherence function Γp

(
τ1 − ts+ti

2
, τ2 − ts+ti

2

)
and the cross-spectral density func-

tion
⟨
V ∗(ω̄′

p + ωp0)V (ω̄′′
p + ωp0)

⟩
are connected through the generalized Wiener-

Khintchine relation [3] with parameters τ1 − (ts + ti)/2 and τ2 − (ts + ti)/2. So,

in terms of the two-photon time parameters τ1 − (ts + ti)/2 and τ2 − (ts + ti)/2, the

coherence function Γp

(
τ1 − ts+ti

2
, τ2 − ts+ti

2

)
has the same functional form as that

of the cross-correlation function of the pump field. The function ⟨g∗1(ω̄′
d) g2(ω̄

′′
d)⟩

is also in the form of a cross-spectral density function, and as is clear from Equa-

tion (5.17), it forms a generalized Wiener-Khintchine relation with the coherence

function Γd

(
τ ′1 − ts−ti

2
, τ ′2 − ts−ti

2

)
. Therefore, the function Γd

(
τ ′1 − ts−ti

2
, τ ′2 − ts−ti

2

)
not only carries all the information about the phase-matching conditions and the

crystal parameters but also carries information about any statistical randomness

that the down-converted photons go through [192]. It is interesting to note that any

statistical randomness encountered by the photons after the down-conversion affects

only Γd

(
τ ′1 − ts−ti

2
, τ ′2 − ts−ti

2

)
and has no effect on Γp

(
τ1 − ts+ti

2
, τ2 − ts+ti

2

)
.

We thus find that the two-photon cross-correlation function factorizes into two

separate coherence functions. The coherence function Γp

(
τ1 − ts+ti

2
, τ2 − ts+ti

2

)
car-

ries the entire statistical information of the pump field, and in this way the temporal

correlation properties of the pump photon get entirely transferred to the down-

converted photons. This result is the temporal analog of the effect described in

Ref. [30] in which it was shown that in PDC the spatial coherence properties of the

pump field gets entirely transferred to the down-converted two-photon field. How-

ever, the present chapter extends beyond just establishing this analogy. For example,

in Ref. [30], the effect due to the phase-matching function was completely ignored,

but in the present chapter, we have included it through the coherence function

Γd

(
τ ′1 − ts−ti

2
, τ ′2 − ts−ti

2

)
. Moreover, like most spatial-interference schemes, Ref. [30]

does not employ a detection scheme that involves space-averaging. However, most

time-domain experiments employ time-averaged detection schemes. Therefore, in

the present chapter, we also work out how time-averaged detection schemes affect
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the temporal coherence transfer in PDC.

5.4.2 Time-averaged detection scheme

In most experiments, one does not measure the instantaneous coincidence rate

R
(2)
si (ts, ti) of Equation (5.14). Instead, one measures the time-averaged coincidence

count rate, averaged over the photon collection time Tpc and the coincidence time-

window Tci. The time-averaged two-photon cross-correlation function Γ̄(2) can be

found by first expressing it as

Γ̄(2) =
⟨⟨
Γ(2)(ts, ti, τs1, τi1, τs2, τi2)

⟩⟩
ts,ti

=

⟨
Γp

(
τ1 −

ts + ti
2

, τ2 −
ts + ti

2

)⟩
ts+ti

2

⟨
Γd

(
τ ′1 −

ts − ti
2

, τ ′2 −
ts − ti

2

)⟩
ts−ti

2

,

(5.18)

and then integrating it with respect to (ts + ti)/2 over Tpc and with respect to

(ts − ti)/2 over Tci. In most experiments, the coincidence time-window Tci spans

a few nanoseconds, which is much longer than the inverse frequency-bandwidth

of g(ω), typically of the order of picoseconds. The photon collection time Tpc is

usually a few seconds and is much longer than the inverse frequency-bandwidth of

the pump field V (ωp), typically of the order of microseconds. Thus we perform the

above time-averaging in the limit Tpc, Tci → ∞ to obtain

Γ̄(2) = Γ̄p (τ1, τ2) Γ̄d (τ
′
1, τ

′
2)

=
√
Ī1Ī2

√
Ḡ1Ḡ2 γ̄p (∆τ) γ̄d (∆τ

′)

= R̄(2)γ̄p (∆τ) γ̄d (∆τ
′) . (5.19)

Here Ī1 = Γ̄p (τ1, τ1), Ḡ1 = Γ̄d (τ
′
1, τ

′
1), R̄

(2) ≡
√
Ī1Ī2

√
Ḡ1Ḡ2, γ̄p (∆τ) = Γ̄p (τ1, τ2) /

√
Ī1Ī2,

and γ̄d (∆τ) = Γ̄d (τ
′
1, τ

′
2) /
√
Ḡ1Ḡ2, etc. The function γ̄p(∆τ) satisfies 0 ≤ |γ̄p(∆τ)| ≤

1 and diminishes over a ∆τ -scale given by the inverse pump bandwidth 1/∆ωp0. The

function γ̄d(∆τ
′) also satisfies 0 ≤ |γ̄d(∆τ ′)| ≤ 1 and diminishes over a ∆τ ′-scale
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given by the inverse frequency-bandwidth 1/∆ωd0. The temporal widths of γ̄p(∆τ)

and γ̄d(∆τ
′) limit the ranges over which fringes could be observed as functions of

∆τ ′ and ∆τ , respectively, in a time-averaged two-photon interference experiment.

The coincidence count rate of Equation (5.14) in the time-averaged scheme there-

fore becomes

R̄
(2)
si = κ21R̄

(2) + κ22R̄
(2) + κ1κ2R̄

(2)γ̄p (∆τ) γ̄d (∆τ
′) ei(ωp0∆τ+ωd0∆τ ′+∆ϕ) + c.c. (5.20)

A similar expression was reported in Ref. [28], where various temporal two-photon

interference effects have been described. The time averaged coherence function

γ̄p (∆τ) has the same functional form as the time-averaged coherence function of

the pump field. The time-averaged coherence function γ̄d (∆τ
′) depends on the

phase-matching function and the crystal parameters, and its functional form shows

up in the Hong-Ou-Mandel (HOM) [41] and HOM-like effects [170, 193].

5.5 The special case of a Gaussian Schell-model

pump field

In the last section, we considered PDC with a very general non-stationary pump

field and described how the temporal coherence properties of the pump field get

transferred to the down-converted two-photon field. In this section, we consider the

pump field to be a widely-studied class of non-stationary fields, namely, the Gaussian

Schell-model field, also known as the non-stationary Gaussian pulsed fields [186].

The cross-spectral density function of a Gaussian Schell-model field is given by

[186]

⟨
V ∗(ω′′ + ω0)V (ω′ + ω0)

⟩
= A exp

[
−(ω′2 + ω′′2)

4 (∆ωp0)
2

]
exp

[
−(ω′ − ω′′)2

2 (∆ωc)
2

]
., (5.21)

where ∆ωp0 is the frequency bandwidth of the field. The parameter ∆ωc is called the

spectral correlation width and it quantifies the frequency-separation up to which dif-
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ferent frequency components are phase-correlated. The limit ∆ωc → 0 corresponds

to a continuous-wave, stationary field in which case the constituent frequency com-

ponents are completely uncorrelated. The other limit ∆ωc → ∞ corresponds to

a fully-coherent pulsed field in which case the constituent frequency components

are perfectly phase-correlated. The corresponding temporal correlation function

ΓGS(t1, t2) can be calculated by using the generalized Wiener-Khintchine theorem

[186]:

ΓGS(t1, t2) =
√
I(t1)I(t2)γGS(∆t), (5.22)

where we have denote ∆t = t1 − t2 and I(t1(2)) = (2π∆ωp0A/T ) exp[−t21(2)/(2T 2)].

Also, we have denoted the degree of temporal coherence as γGS(∆t) = exp[−(∆t)2/(2τ 2coh)].

The quantity τcoh = (∆ωc/∆ωp0) [1/(2∆ωp0)
2 + 1/(∆ωc)

2]
1/2

is the coherence time

of the field and T = [1/(2∆ωp0)
2 + 1/(∆ωc)

2]
1/2

is a measure of the temporal width

of the non-stationary Gaussian pulse. The limit ∆ωc → ∞ yields τcoh → ∞ as ex-

pected for a fully-coherent field, and the other limit ∆ωc → 0 yields τcoh = 1/∆ωp0

as expected for a continuous-wave, stationary field.

Now, we assume that Γd

(
τ ′1 − ts−ti

2
, τ ′2 − ts−ti

2

)
= 1 and take the pump field to

be the Gaussian Schell-model field given by Equation (5.21). Equation (5.15) then

becomes:

Γ(2)(ts, ti, τ1, τ2) = Γp

(
τ1 −

ts + ti
2

, τ2 −
ts + ti

2

)
=

√
I

(
τ1 −

ts + ti
2

)
I

(
τ2 −

ts + ti
2

)
γp(∆τ), (5.23)

where

I

(
τ1 −

ts + ti
2

)
=

2π∆ωp0A

T
exp

[
−
(
τ1 − ts+ti

2

)2
2T 2

]
, etc,

and γp(∆τ) = exp

[
−∆τ 2

2τ 2coh

]
.
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As expected from Equation (5.15), we find that in terms of τ1 − ts+ti
2

and τ2 −
ts+ti
2

, the two-photon cross-correlation function in Equation (5.23) assumes the same

functional form as does the cross-correlation function in Equation (5.22) in terms of

t1 and t2. When integrated over t, Equation (5.23) yields

Γ̄(2) = Γ̄p(τ1, τ2) =
√
Ī1Ī2γ̄p(∆τ), (5.24)

with Ī1 = Ī2 = (2π)
3
2∆ωp0A and γ̄p(∆τ) = exp {−∆τ 2/(2τ̄ 2coh)} where τ̄coh = 1/∆ωp0

is a measure of the coherence time. The time averaging washes out effects due to

frequency correlations. Thus, only in the case of a stationary pump field γ̄p(∆τ) =

γp(∆τ) and τ̄coh = τcoh.

5.6 Pump temporal coherence and two-qubit energy-

time entanglement

Two-qubit states are the necessary ingredients for many quantum information pro-

tocols [58, 13, 14] and have been realized by exploiting the entanglement of PDC

photons in several degrees of freedom including polarization [33], time-energy [42,

35, 180, 173, 194, 184, 185], position-momentum [195, 174, 196], and orbital angular

momentum (OAM) [197, 198, 110, 31]. There have been previous studies describing

how correlations of the pump field in polarization and spatial degrees of freedom

affect the entanglement of the generated two-qubit states. In the polarization de-

gree of freedom it was shown [149] that the degree of polarization P of the pump

photon puts an upper bound of (1 +P )/2 on the concurrence of the generated two-

qubit state. In the spatial degree of freedom, effects of pump spatial coherence on

the entanglement of the generated spatial two-qubit state have been worked out for

two-qubit state that have only two non-zero diagonal elements, and for such states it

has been shown that the concurrence is bounded by the degree of spatial coherence

of the pump field [30]. However, to the best of our knowledge, no such relation has
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so far been derived for the time-energy entangled two-qubit states.

There are two generic methods by which one makes a PDC-based time-energy

entangled two-qubit state. In the first method, one uses a continuous-wave pump

field, either single-mode [42] or multi-mode [184, 185]. In the second method, one

uses a pulsed pump field [35, 180, 173, 194]. In both these methods, a combination

of post-selection strategies, such as selecting a faster coincidence detection-window,

using arrival time of pump photon as a trigger etc., one makes sure that there are

only two alternative pathways in which the signal and idler photons reach their

respective detectors. The two alternative pathways form the two dimensional qubit

space for the signal and idler photons. We represent by |s1⟩ the state of the signal

photon in alternative 1, etc. Therefore, the density matrix ρ2qubit of the two-qubit

state can be written in the basis {|s1⟩|i1⟩, |s1⟩|i2⟩, |s2⟩|i1⟩, |s2⟩|i2⟩} as:

ρ =



a 0 0 c

0 0 0 0

0 0 0 0

c∗ 0 0 b


(5.25)

where the diagonal terms a and b are the probabilities that the signal and idler pho-

tons are detected in states |s1⟩|i1⟩ and |s2⟩|i2⟩, respectively, and the off-diagonal

term c is a measure of coherence between states |s1⟩|i1⟩ and |s2⟩|i2⟩. In an exper-

imental situation, the density matrix ρ can be represented by the two alternative

pathways of Figure 5.1. Therefore, using Equation (5.20), we write a = ηκ21R̄
(2) and

b = ηκ22R̄
(2), where η = 1/[κ21R̄

(2) + κ22R̄
(2)] is the constant of proportionality. The

off-diagonal term is given by

c = ηκ1κ2R̄
(2)γ̄p(∆τ)γ̄d(∆τ

′)ei(ωp0∆τ+ωd0∆τ ′+∆ϕ). (5.26)

The entanglement of ρ2qubit, as quantified by Wootters’s concurrence C(ρ2qubit) [18],
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can be shown to be

C(ρ2qubit) = 2|c| = κ1κ2R̄
(2)

κ21R̄
(2) + κ22R̄

(2)
γ̄p(∆τ)γ̄d(∆τ

′). (5.27)

The pre-factor κ1κ2R̄
(2)/(κ21R̄

(2) + κ22R̄
(2)) is no greater than 1, and γ̄d(∆τ

′) also

satisfies 0 ≤ |γ̄d(∆τ ′)| ≤ 1. We therefore arrive at the relation: C(ρ2qubit) ≤ γ̄p(∆τ).

Therefore, we find that the concurrence C(ρ2qubit) of the time-energy two-qubit state

is bounded from above by the degree of coherence of the pump photon and thus that

the temporal correlations of the pump field set an upper bound on the attainable

concurrence for a two-qubit state of the form of Equation (5.25). This result is the

temporal analog of the results obtained in the polarization [149] and spatial [30]

degrees of freedom. However, unlike in the spatial degree of freedom, which does

not involve any space-averaged detection scheme, the results derived in this chapter

show that even for the time-averaged detection schemes, the temporal correlation

properties of the pump do directly decide the upper limit on entanglement that a

time-energy entangled two-qubit state can achieve.

5.7 Summary

In conclusion, we have shown that in parametric down-conversion the coherence

properties of a temporally partially coherent pump field get entirely transferred

to the down-converted entangled two-photon field. Under the assumption that the

frequency-bandwidth of the down-converted signal-idler photons is much larger than

that of the pump, we have worked out the temporal coherence functions of the

down-converted field for both infinitely-fast and time-averaged detection schemes.

We have shown that in each scheme the coherence function factorizes into two sepa-

rate coherence functions with one of them carrying the entire statistical information

of the pump field. Taking the pump to be a Gaussian Schell-model field, we have

derived explicit expressions for the coherence functions. Finally, we have shown that

the concurrence of time-energy entangled two-qubit states is bounded by the degree
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of temporal coherence of the pump field. This result extends previously obtained

results in the spatial [30] and polarization [149] degrees of freedom to the temporal

degree of freedom and can thus have important implications for understanding how

correlations of the pump field in general manifest as two-particle entanglement. Our

results can also be important for time-energy two-qubit based quantum communica-

tion applications. This is because it has been recognized that energy-time entangled

two-qubit states are better than the polarization two-qubit states for long-distance

quantum information [190, 191], and our results show that the temporal coherence

properties of the pump field can be used as a parameter for tailoring the two-qubit

time-energy entanglement. Our work can also have implication for PDC-based her-

alded single photons sources since the degree of purity of heralded photons depends

on the correlations in the pump field, and therefore it can be tailored by controlling

the coherence properties of the pump field.



Chapter 6

Intrinsic correlations of

infinite-dimensional states

6.1 Introduction

According to its definition from optical coherence theory [3], coherence refers to the

ability of a light field to superpose with itself and exhibit interference. While the

contrast of the interference can be used to quantify coherence in a specific basis [1, 2],

it has been recognized that the intrinsic coherence of a light field must be quantified

in a basis-invariant manner [4, 78, 80, 199, 83, 82, 84, 85]. A basis-invariant quan-

tification of coherence was first carried out by Wolf [78], who formulated a measure

known as the degree of polarization, denoted as P2, for two-dimensional polarization

states of light. The quantity P2 has the following known interpretations that jus-

tify its uniqueness as an intrinsic measure of coherence for two-dimensional states

[78], namely: (i) it is the norm of the Bloch vector representing the state, (ii) it

is the Frobenius distance between the state and the fully incoherent identity state

[199], (iii) it is the distance between the origin and the center of mass of 2 point

masses of magnitudes equal to the eigenvalues of the state that are both kept at

unit distance from the origin in a Euclidean space of unit dimension [200], (iv) it

is the maximum contrast or visibility of an interference experiment, (v) it is the
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maximum pairwise-coherence of the state over all orthonormal bases, and (vi) it is

the weightage of the pure part of the state. An analogous measure, which we denote

as PN , was first obtained by Barakat [79, 80], and independently by Samson and

Olson [81] by generalizing the Bloch vector interpretation of P2 to N -dimensional

states. Recently, following up on previous studies by Setälä et al. [83, 82] and

Luis [84] on three-dimensional and four-dimensional states, respectively, Yao et al.

[85] generalized the Frobenius distance interpretation of P2 to yield an analogous

measure PN for N -dimensional states, where N is a positive integer. The center-

of-mass interpretation of Ref. [200] also yields a measure PN , which is the distance

between the origin and the center of mass of N point masses of magnitudes equal

to the eigenvalues of the state that are kept mutually equidistant and at unit dis-

tance from the origin in a Euclidean space of (N − 1) dimensions. In a recent study

[86], we demonstrated that PN also generalizes the other three interpretations of

P2, and therefore argued that PN is the analogous basis-invariant measure of coher-

ence for finite-N -dimensional systems. In this chapter, we will generalize PN to the

N → ∞ limit to quantify the intrinsic coherence P∞ of infinite-dimensional states

in the orbital angular momentum (OAM), photon number, position and momentum

representations.

The measure P∞ for states in the OAM representation can be useful for opti-

cal communication protocols that harness high-dimensional superpositions of OAM

states of photons [201]. For instance, P∞ can be used for quantifying the coher-

ence degradation of superposition states over free-space [202] and fiber-based [112]

long distance transmission. In addition, P∞ can also be useful in studies that char-

acterize OAM-entangled pure states through measurements of angular coherence

[37, 115, 131]. In the photon number representation, P∞ can be used to quan-

tify the coherence of Gaussian states for continuous-variable quantum protocols

[203, 204, 205]. In the position and momentum representations, we expect P∞ to be

useful for studying how the spatial coherence of light fields is affected by turbulent

environments [206, 207, 208]. Until now the spatial coherence of light fields has only
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been quantified in a restricted basis-dependent manner in terms of cross-correlation

functions and cross-spectral density functions [3, 2]. In contrast, the measure P∞

can be used to quantify the spatial coherence of the entire field in a basis-invariant

manner. Moreover, P∞ can also be useful in theoretical studies on decoherence in

open quantum systems [209, 210, 211].

The generalization procedure to obtain P∞ from PN involves the following sub-

tleties: Firstly, all the known interpretations of PN have been defined under the

assumption that N is finite. Secondly, if we consider the analytic expression for PN

of a normalized N -dimensional state represented by the density operator ρ [85, 86],

namely,

PN =

√
NTr(ρ2)− 1

N − 1
, (6.1)

and heuristically evaluate its limit as N → ∞, we obtain P∞ =
√

Tr(ρ2), where ρ

is now a normalized infinite-dimensional state. However, this limiting procedure is

not always legitimate because an infinite-dimensional state need not be normalizable

[212]. Moreover, the trace operation is not well-defined in infinite-dimensional vector

spaces, and can lead to divergent results [213]. In addition, infinite-dimensional

vector spaces are generally associated with issues pertaining to the convergence of

infinite summations, the order in which several summations are performed, and the

validity of various limiting procedures [44].

These issues were studied by Pegg and Barnett initially in the number-phase rep-

resentations in their attempt to formulate a well-behaved Hermitian phase operator

[214, 215], and subsequently in the OAM-angle representations in their quantum

treatment of rotation angles [44]. Specifically, the authors developed rigorous for-

malisms in which the infinite-dimensional representations are viewed as limits of

physically indistinguishable finite-dimensional representations. They demonstrated

that if physical quantities are evaluated in the finite-dimensional representations

with the limit of the infinite dimensionality being imposed only at the final stage

of the calculation, then the issues associated with infinite-dimensional spaces are

circumvented while still yielding physically consistent, non-divergent results.
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In this chapter, we use the Pegg-Barnett procedure to extend the measure PN

to the N → ∞ limit and quantify the intrinsic coherence P∞ of infinite-dimensional

states. We organize the chapter as follows: In Section 6.2, we consider states in the

OAM-angle and photon number representations. Using the existing Pegg-Barnett

formalisms for these representations, we show that P∞ for a normalized physical

state ρ is given by P∞ =
√

Tr(ρ2). In Section 6.3, we consider states in the position

and momentum representations. We first explicitly develop a Pegg-Barnett-type

formalism for position and momentum, and subsequently use the formalism to show

that P∞ =
√
Tr(ρ2), for a normalized physical state ρ. In Section 6.4, we present

the conclusions and future outlook of this chapter.

6.2 OAM-angle and photon number representa-

tions

6.2.1 OAM-Angle

We begin with a description of the infinite-dimensional improper vector space rep-

resentation of the OAM degree of freedom [44]. The OAM eigenstates, denoted

by |l⟩, where l = −∞, ...,−1, 0, 1, ...,∞, constitute a discrete basis, whereas the

angle eigenstates denoted by |θ⟩, where θ ∈ [0, 2π), form a continuous basis. By

orthonormality and completeness, these basis vectors satisfy

⟨l|l′⟩ = δll′ , ⟨θ|θ′⟩ = δ(θ − θ′), (6.2a)

+∞∑
l=−∞

|l⟩⟨l| = 1,

∫ 2π

0

|θ⟩⟨θ| dθ = 1 (6.2b)

|l⟩ = 1√
2π

∫ 2π

0

e+ilθ|θ⟩ dθ, (6.2c)

|θ⟩ = 1√
2π

+∞∑
l=−∞

e−ilθ|l⟩. (6.2d)
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Figure 6.1: In the proper representation constructed by Pegg and Barnett, OAM
eigenvectors |l⟩ for l = −D, ...,+D, and angle eigenvectors |θn⟩ where θn = n∆θ
for n = 0, 1, ..., 2D, with ∆θ = 2π/(2D + 1) span a (2D + 1)-dimensional space. In
order to derive P∞ of an infinite-dimensional state ρ, we first calculate P2D+1 in this
finite representation and then take the limit of D → ∞ or ∆θ → 0 at the end of the
calculation.

Such a vector space is referred to as improper because some states in this space

may not be normalizable. For instance, notice from Equation (6.2d) that the state

|θ⟩ is not normalizable. Other formal issues associated with this space have been

described in detail in Ref. [44]. In the Pegg-Barnett formalism, the above infinite-

dimensional vector space is substituted by a finite-dimensional vector space spanned

by the eigenvectors |l⟩, where l = −D, ...,−1, 0, 1, ..., D, with D being an arbitrarily-

large but finite positive integer. We will now review the Pegg-Barnett derivation of

the corresponding angle eigenvectors in this finite-dimensional space [44].

We denote the finite-dimensional OAM operator as L̂. As L̂ must be a generator

of translations in angle space, an angle state |θ⟩ must satisfy [212]

exp
(
− iL̂η/ℏ

)
|θ⟩ = |θ + η⟩. (6.3)

If |α0⟩ is defined as the state corresponding to the angular origin, then

|θ⟩ = exp
(
− iL̂θ/ℏ

)
|α0⟩. (6.4)

Now, similarly an angle operator θ̂α must be a generator of translations in the OAM

space. This implies that

exp
(
imθ̂α

)
|l⟩ = |l +m⟩ (6.5)
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Now let us suppose that,

|α0⟩ =
+D∑

l=−D

al|l⟩. (6.6)

Operating exp(imθ̂α/ℏ) on |α0⟩ and using Equation (6.5) on Equation (6.6) yields

|α0⟩ =
+D∑

l=−D

al|l +m⟩. (6.7)

Now since the above equation is true for all m, it follows that the coefficients al

must be independent of l. Upon normalizing the state, we obtain al = (1/
√
2D + 1).

Using Equation (6.35) we find

|θ⟩ =
+D∑

l=−D

e−ilθ

√
2D + 1

|l⟩. (6.8)

We now note that

⟨θ|θ′⟩ =
+D∑

l=−D

e+il(θ−θ′)

(2D + 1)

=
1

(2D + 1)

sin [(2D + 1)(θ − θ′)/2]

sin [(θ − θ′)/2]
. (6.9)

This implies that ⟨θ|θ′⟩ = 0 only when (θ − θ′) = 2πn/(2D + 1), where n is a non-

zero integer. Thus, a corresponding angle basis is given by the eigenstates |θn⟩ with

eigenvalues

θn = α0 + n∆θ (n = 0, 1, ..., 2l) . (6.10)

Here α0 is an arbitrary reference angle which fixes a particular basis, and can be

assumed to be zero. The angular separation ∆θ = 2π/(2D+1) between the consec-

utive angle eigenvalues can be made arbitrarily close to zero by making D arbitrarily
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large. By orthonormality and completeness, the basis vectors |l⟩ and |θn⟩ satisfy

⟨l|l′⟩ = δll′ , ⟨θn|θk⟩ = δnk, (6.11a)

+D∑
m=−D

|l⟩⟨l| = 1,
2D∑
n=0

|θn⟩⟨θn| = 1, (6.11b)

and are related to each other as

|l⟩ = 1√
2D + 1

2D∑
n=0

e+ilθn|θn⟩, (6.12a)

|θn⟩ =
1√

2D + 1

+D∑
l=−D

e−ilθn|l⟩. (6.12b)

In this way, Pegg and Barnett constructed a finite-dimensional representation for

OAM and angle. We depict this representation in Figure 1. Such a representation is

referred to as proper because all states in this space are normalizable. The authors

also proved that it is a physically consistent representation by demonstrating that

the finite-dimensional commutator [θ̂α, L̂] is physically indistinguishable from its

infinite-dimensional counterpart [θ̂α, L̂] = iℏ in the D → ∞ limit.

We now consider a general state ρ, whose form in the improper representation

is given by

ρ =
+∞∑

l=−∞

+∞∑
l′=−∞

cll′ |l⟩⟨l′|. (6.13)

Using equations (6.2), it can be shown that ρ has the angle-basis representation

ρ =

∫ 2π

0

∫ 2π

0

W (θ, θ′) |θ⟩⟨θ′| dθ dθ′, (6.14)

where

W (θ, θ′) =
1

2π

+∞∑
l=−∞

+∞∑
l′=−∞

cll′ e
+i(lθ−l′θ′). (6.15)

The above relation expresses the Fourier relationship between the OAM cross-

correlation elements cll′ and the angular correlation function W (θ, θ′). Our aim is

to characterize the intrinsic coherence of the state ρ in terms of cmm′ and W (θ, θ′).
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According to the Pegg-Barnett procedure, the state ρ can be represented in the

arbitrarily-large (2D + 1)-dimensional space as

ρ = lim
D→∞

+D∑
l=−D

+D∑
l′=−D

cll′ |l⟩⟨l′|, (6.16)

where Tr(ρ) =
∑+D

l=−D cll = 1. However, as emphasized by Pegg and Barnett [44],

the limit of D → ∞ must be imposed only at the final stage of calculating physical

quantities. This implies that we can compute the intrinsic coherence P∞ of ρ by

first computing P2D+1 for ρ using Equation (6.1), and then taking the limit of D

going to infinity at the end of the calculation. Following this procedure, we obtain

P∞ = lim
D→∞

√√√√2D + 1

2D

[ D∑
l=−D

D∑
l′=−D

|cll′ |2 −
1

2D + 1

]
. (6.17)

Using the above limiting formula, P∞ can be calculated for any arbitrary state.

However, in this study we will mainly be concerned with physical states. If ρ is a

physical state, then it can only contain contributions from OAM eigenstates upto

some finite absolute OAM value, sayM . This implies that cll′ = 0 for all |l|, |l′| > M ,

where M can be arbitrarily large but still less than D. In addition, a physical state

must also be normalizable, i.e, Tr(ρ) =
∑+∞

l=−∞ cll = 1. Incorporating these facts in

Equation(6.17), we obtain

P∞ =

√√√√ +∞∑
l=−∞

+∞∑
l′=−∞

|cll′ |2 =
√
Tr(ρ2). (6.18)

The above equation can be used to compute the intrinsic coherence P∞ of any

physical state in the OAM representation.

We will now obtain the expression for P∞ in terms of the angle representation

W (θ, θ′). Using equations (6.11), (6.12), and (6.16), it follows that

ρ = lim
D→∞

2D∑
n=0

2D∑
k=0

W̄θnθk |θn⟩⟨θk|, (6.19)
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where

W̄θn,θk =
1

2D + 1

+D∑
l=−D

+D∑
l′=−D

cll′ e
+i(lθn−l′θk) (6.20)

are the discrete matrix elements of ρ in the angle basis. As ρ is normalized, we have∑2D
n=0 W̄θnθn = 1. Using Equation (6.1), we compute P∞ = liml→∞ P2D+1 in terms

of W̄θnθk to obtain

P∞ = lim
D→∞

√√√√2D + 1

2D

[ 2D∑
n=0

2D∑
k=0

|W̄θnθk |2 −
1

2D + 1

]
. (6.21)

We will now obtain the relation betweenW (θ, θ′) and W̄θnθk for a physical state. We

note that for a physical state, W (θ, θ′) must be a continuous function normalizable

to unity. Therefore, as D → ∞ or ∆θ = 2π/(2D + 1) → 0 the relation between

W (θ, θ′) and W̄θnθk must be such that the condition
∑2l

n=0 W̄θnθn = 1 must imply∫ 2π

0
W (θ, θ) dθ = 1. We notice that substituting W (θn, θn) = lim∆θ→0 W̄θnθn/∆θ in∑2l

n=0 W̄θnθn = 1 leads to lim∆θ→0

∑2π/∆θ−1
n=0 W (n∆θ, n∆θ)∆θ = 1, which according

to Riemann’s definition of an integral, is equivalent to
∫ 2π

0
W (θ, θ)dθ = 1. Now as

the relation between W (θ, θ′) and W̄θnθk must be independent of the arguments, it

follows that

W (θn, θk) = lim
∆θ→0

W̄θnθk/∆θ. (6.22)

We use the above Equation (6.22) to substitute for W̄θnθk in Equation (6.21), which

upon simplification yields

P∞ = lim
D→∞

√√√√ 2D∑
n=0

2D∑
k=0

|W (θn, θk)|2 (∆θ)2

= lim
∆θ→0

√√√√(2π/∆θ−1)∑
n=0

(2π/∆θ−1)∑
k=0

|W (n∆θ, k∆θ)|2∆θ∆θ.

The above equation can be expressed in integral form using Riemann’s definition as

P∞ =

√∫ 2π

0

∫ 2π

0

|W (θ, θ′)|2 dθ dθ′ =
√

Tr(ρ2). (6.23)
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It may be verified using Equation (6.15) that the above equation is equivalent to

Equation (6.18), as expected from basis invariance. Thus, we have characterized the

intrinsic coherence of infinite-dimensional states in the OAM and angle representa-

tions.

Example: States of photons in parametric down-conversion

As an illustrative application, we compute P∞ of photons produced from parametric

down-conversion (PDC) of a Gaussian pump field. By virtue of OAM conservation,

the two-photon signal-idler state measured by a detection system sensitive only to

the OAM index is known to take the form |ψ2⟩ =
∑

l

√
Sl|l⟩s| − l⟩i, where Sl = S−l

and
∑

l Sl = 1 [32]. The individual signal and idler photons are described by the

reduced density operator ρ = Tri(|ψ⟩⟨ψ|) = Trs(|ψ⟩⟨ψ|), where Tri(s) denotes a

partial trace over the idler (signal) photon. The state ρ has the diagonal form

ρ =
+∞∑

l=−∞

Sl|l⟩⟨l|. (6.24)

The distribution of the probabilities Sl is referred to as the angular Schmidt spec-

trum of the two-photon entangled state [77, 92]. The angular Schmidt number

Ka = 1/
∑

l S
2
l is a useful measure for quantifying the effective dimensionality of the

entangled state. Using Equation (6.18), we compute P∞ of ρ and obtain

P∞ =
√

Tr(ρ2) =

√√√√ +∞∑
l=−∞

S2
l =

1√
Ka

. (6.25)

Thus, P∞ of the individual photons is inversely proportional to the square root of

the angular Schmidt number of the two-photon state. We expect P∞ to be useful

for studies characterizing OAM-entangled states produced from PDC [37, 115, 131].
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6.2.2 Photon number

We now consider the infinite-dimensional photon number representation of light

fields. It is known that like OAM and angle, the photon number and optical phase

are conjugate physical observables. The difference is that while the OAM operator

eigenvalues can take all integer values from −∞ to +∞, the photon number operator

eigenvalues can take only integer values from 0 to ∞. In their construction of a

Hermitian phase operator, Pegg and Barnett have developed a proper formalism

for photon number and optical phase representations [215, 214]. Therefore, the

formulation of P∞ for states in the photon number representation can be obtained

in an entirely analogous manner as for the OAM-angle case.

Consider a general state expressed in the photon number representation as

ρ =
∞∑
n=0

∞∑
n′=0

ann′ |n⟩⟨n′|, (6.26)

where |n⟩ for n = 0, 1, ...,∞ are the eigenstates of the photon number operator.

Following the Pegg-Barnett procedure, we now consider the finite-dimensional vector

space spanned by the vectors |n⟩, where n = 0, 1, ..., D with D being an arbitrarily

large integer. Using Equation (6.1) to compute the intrinsic coherence PD+1 of ρ

and taking the limit of s tending to infinity, we obtain

P∞ = lim
D→∞

√√√√D + 1

D

[ D∑
n=0

D∑
n′=0

|ann′ |2 − 1

D + 1

]
. (6.27)

We will now restrict our attention to physical states. As defined in Ref. [214],

a physical state is one which can be generated from the vacuum through a finite

interaction with a finite energy source for a finite time. For such a state, ann′ = 0 for

n, n′ > K, where K is arbitrarily large but still smaller than D. Moreover, such a

state must be normalizable such that Tr(ρ) =
∑∞

n=0 ann = 1. Using Equation (6.27)
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for a physical state, we obtain

P∞ =

√√√√ ∞∑
n=0

∞∑
n′=0

|ann′|2 =
√
Tr(ρ2). (6.28)

Using the above equation, we can compute the intrinsic coherence P∞ for physical

states in the photon number representation.

Example: Single-mode thermal state

For purposes of illustration, we now compute the intrinsic coherence of a single-mode

thermal field. Such a field is represented in the photon number basis as (see section

1.5 of [216])

ρ =
∞∑
n=0

(1− e−βℏω)e−nβℏω|n⟩⟨n|, (6.29)

where Tr(ρ) = 1. We have denoted β = 1/kBT , where kB is Boltzmann’s constant

and T is the effective temperature for the field. Using Equation (6.28), we compute

P∞ for ρ to obtain

P∞ =
√

Tr(ρ2) =

√
1− e−βℏω

1 + e−βℏω =

√
tanh

(
βℏω
2

)
. (6.30)

We notice that in the limit of T → 0 or β → ∞ where ρ is the pure vacuum state, we

have P∞ = 1. On the other hand, in the limit of T → ∞ or β → 0 where ρ represents

an incoherent mixture of all possible number states with equal probabilities, we have

P∞ = 0.

6.3 Position and momentum representations

6.3.1 Improper Representation

We shall now consider the infinite-dimensional continuous-variable position and mo-

mentum representations. For conceptual clarity, we present our analysis for a one-

dimensional configuration space labeled by the co-ordinate x, whose corresponding
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canonical momentum space is labeled by the co-ordinate p. A general state ρ in the

position representation is written as

ρ =

∫ +∞

−∞

∫ +∞

−∞
G(x, x′) |x⟩⟨x′| dx dx′. (6.31)

Similarly, in the momentum representation ρ takes the general form

ρ =

∫ +∞

−∞

∫ +∞

−∞
Γ(p, p′) |p⟩⟨p′| dp dp′, (6.32)

where the Fourier relation between position and momentum representations implies

Γ(p, p′) =
1

2πℏ

∫∫ +∞

−∞
G(x, x′) e−i(px−p′x′)/ℏ dx dx′. (6.33)

The continuous matrix elements G(x, x′) and Γ(p, p′) represent the cross-correlation

functions in the position and momentum representations, respectively. We seek a

formulation of P∞ of ρ in terms ofG(x, x′) and Γ(p, p′). To the best of our knowledge,

a Pegg-Barnett-type formalism for position and momentum has not been constructed

so far. In what follows, we develop such a formalism using a strategy similar to

the one adopted by Pegg and Barnett for OAM-angle and number-phase pair of

variables. An important distinction is that in contrast with the OAM-angle and

number-phase pairs, the position-momentum pair has both the physical observables

being continuous and unbounded.

6.3.2 Construction of a Proper Representation

Consider an arbitrarily-large but finite region [−pmax, pmax] in momentum space.

We sample (2D + 1) equally-spaced momentum values pj in this region, where j =

−D, ..., 0, ..., D, with D also being arbitrarily large but finite. The spacing between

consecutive values is ∆p = pmax/D, which is made arbitrarily close to zero. Using the

(2D+1) eigenstates |pj⟩ corresponding to the eigenvalues pj = j∆p of the momentum

operator, we will develop a consistent (2D + 1)-dimensional proper representation
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Figure 6.2: In the proper representation that we construct in this chapter, the
position eigenvectors |xm⟩ for m = −D, ..., 0, ...D, and momentum eigenvectors |pj⟩
for j = −D, ..., 0, ..., D span a (2D + 1)-dimensional space. In order to derive P∞
for an infinite-dimensional state ρ in the position and momentum representations,
we first calculate P2D+1 and take the limit of D → ∞ and pmax → ∞ such that
1/∆p = D/pmax → ∞ at the end of the calculation.

for position and momentum. We will then use this representation to compute P2D+1

of a general state, and then take the limit of D → ∞ and pmax → ∞, subject to the

condition that 1/∆p = D/pmax → ∞ to obtain the expression for P∞.

We note that a momentum operator p̂ must be a generator of translations in

position space. Therefore, a position state |x⟩ must satisfy [212]

exp (−ip̂η/ℏ) |x⟩ = |x+ η⟩. (6.34)

If we define |x0⟩ as the state corresponding to the position zero, then

|x⟩ = exp (−ip̂x/ℏ) |x0⟩. (6.35)

Now, similarly a position operator x̂ must be a generator of translations in momen-

tum space. This implies that

exp (+ipkx̂/ℏ) |pj⟩ = |pj+k⟩, (6.36)

where the translations are cyclic such that exp (ip1x̂/ℏ) |pD⟩ = |p−D⟩. In direct

analogy with the derivation of Equation (6.8), we can use equations (6.35) and

(6.36) to show that the position state is given by

|x⟩ =
+D∑

j=−D

e−ipjx/ℏ
√
2D + 1

|pj⟩. (6.37)
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We now note that

⟨x|x′⟩ =
+D∑

j=−D

e+ij(x−x′)∆p/ℏ

(2D + 1)

=
1

(2D + 1)

sin [(2D + 1)(x− x′)∆p/2ℏ]
sin [(x− x′)∆p/2ℏ]

. (6.38)

This implies that ⟨x|x′⟩ = 0 only when (x− x′) = 2πℏn/{(2D + 1)∆p}, where n is

a non-zero integer. This allows us to select an orthonormal basis {|xm⟩}, where

xm =
2πmℏ

(2D + 1)∆p
(m = −D, ..., 0, ..., D) (6.39)

These position eigenvalues are equally-spaced points from x−D to xD with a spacing

of ∆x = 2πℏ/{(2D + 1)∆p}. We note that by orthonormality and completeness,

the basis vectors |xm⟩ and |pj⟩ satisfy

⟨xm|xn⟩ = δmn, ⟨pj|pk⟩ = δjk, (6.40a)

+D∑
m=−D

|xm⟩⟨xm| = 1,
+D∑

j=−D

|pj⟩⟨pj| = 1. (6.40b)

Using equations (6.37) and (6.39), we find that the basis vectors have the form

|xm⟩ =
1√

2D + 1

+D∑
j=−D

e−i2πmj/(2D+1) |pj⟩, (6.41a)

|pj⟩ =
1√

2D + 1

+D∑
m=−D

e+i2πmj/(2D+1) |xm⟩. (6.41b)

We have derived a finite-dimensional proper representation for position and momen-

tum. For clarity, we depict the representation in Figure 2. In order to prove that

it is a physically consistent representation, we must now show that the commutator

[x̂, p̂] in this representation is physically indistinguishable from the improper com-

mutation relation [x̂, p̂] = iℏ. To that end, we note that the operators x̂ and p̂ can
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be represented as

x̂ =
+D∑

m=−D

xm|xm⟩⟨xm| , (6.42a)

p̂ =
+D∑

j=−D

pj|pj⟩⟨pj|. (6.42b)

Using the above equations, we find that the commutator [x̂, p̂] has the following

matrix elements in the position and momentum bases:

⟨xm|[x̂, p̂]|xn⟩ =
2πℏ(m− n)

(2D + 1)2

+D∑
j=−D

j ei2π(m−n)j/(2D+1), (6.43a)

⟨pj|[x̂, p̂]|pk⟩ =
2πℏ(k − j)

(2D + 1)2

+D∑
m=−D

me−i2π(j−k)m/(2D+1). (6.43b)

We note that the diagonal elements ⟨xm|[x̂, p̂]|xm⟩ and ⟨pj|[x̂, p̂]|pj⟩ are all zero. As a

result, the trace of [x̂, p̂] is zero, as expected for any commutator of finite-dimensional

operators. We can evaluate the above equations (6.43) in the limit D → ∞ using

Mathematica [217] to obtain the effective forms

[x̂, p̂] = iℏ
[
1−

∑
m,n

cos{(m− n)π}|xm⟩⟨xn|
]
, (6.44a)

[x̂, p̂] = iℏ
[
1−

∑
j,k

cos{(j − k)π}|pj⟩⟨pk|
]
. (6.44b)

Using cos{(m − n)π} = {e+i(m−n)π + e−i(m−n)π}/2 and equations (6.41), it can be

shown that Equations (6.44) are equivalent to

[x̂, p̂] = lim
D→∞

iℏ
[
1− (2D + 1)|x(D+ 1

2
)⟩⟨x(D+ 1

2
)|
]
, (6.45a)

[x̂, p̂] = lim
D→∞

iℏ
[
1− (2D + 1)|p(D+ 1

2
)⟩⟨p(D+ 1

2
)|
]
. (6.45b)

Now we note that any physical state will be localized to a finite region in both

position and momentum space. As a result, when the expectation value of [x̂, p̂]

is evaluated for such a state, the contributions from the second term in the above
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expressions will vanish. In this limit, we recover the usual commutator [x̂, p̂] = iℏ

for infinite-dimensional operators. Thus, we have constructed a consistent proper

finite-dimensional representation for position and momentum.

6.3.3 Derivation of the expression for P∞

Following the Pegg-Barnett procedure, the state ρ from Equation (6.31) can be

written in the proper position representation as

ρ = lim
D∆x→∞

lim
∆x→0

+D∑
m=−D

+D∑
n=−D

Ḡxmxn|xm⟩⟨xn|. (6.46)

Similarly, ρ can be written in the momentum proper representation as

ρ = lim
D∆p→∞

lim
∆p→0

+D∑
j=−D

+D∑
k=−D

Γ̄pjpk |pj⟩⟨pk|, (6.47)

where using equations (6.40) and (6.46), we find

Γ̄pjpk =
1

2D + 1

+D∑
m=−D

+D∑
n=−D

Ḡxmxne
−i2π(jm−kn)/(2D+1). (6.48)

As ρ is normalized, we have
∑+D

m=−D Ḡxmxm =
∑+D

j=−D Γ̄pj ,pj = 1. We shall now

compute P∞ for ρ by first computing P2D+1 in terms of Ḡxmxn and Γ̄pjpk , and then

evaluating its limiting value as D → ∞ and pmax → ∞, subject to the constraint

D/pmax → ∞. These limits together ensure that ∆x → 0 and ∆p → 0, such that

D∆x→ ∞ and D∆p→ ∞. Thus, we can compute P∞ in terms of Ḡxmxn as

P∞ = lim
D∆x→∞

lim
∆x→0

√
2D + 1

2D

[∑
m,n

|Ḡxmxn|2 −
1

2D + 1

]
. (6.49)

Similarly in terms of Γ̄pjpk , we have

P∞ = lim
D∆p→∞

lim
∆p→0

√
2D + 1

2D

[∑
j,k

|Γ̄pjpk |2 −
1

2D + 1

]
. (6.50)
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Now for physical states P∞ can be quantified in terms of the functions G(x, x′) and

Γ(p, p′) of Equations (6.31) and (6.32). To that end, we must now obtain the relation

between G(x, x′) and Γ(p, p′) and their finite-dimensional counterparts Ḡxmxn and

Γ̄pjpk , respectively. Using a line of reasoning similar to the one used previously for

arriving at Equation (6.22), one can show that

G(xm, xn) = lim
D∆x→∞

lim
∆x→0

Ḡxmxn/∆x, (6.51a)

Γ(pj, pk) = lim
D∆p→∞

lim
∆p→0

Γ̄pjpk/∆p. (6.51b)

Upon substituting Equation (6.51a) in Equation (6.49), and Equation (6.51b) in

Equation (6.50) and simplifying, we obtain

P∞ = lim
D∆x→∞

lim
∆x→0

√√√√ +D∑
m,n=−D

|G(m∆x, n∆x)|2∆x∆x,

P∞ = lim
D∆p→∞

lim
∆p→0

√√√√ +D∑
j,k=−D

|Γ(j∆p, k∆p)|2∆p∆p.

We now note that any physical state must have a finite extent in position and mo-

mentum space. This implies that G(m∆x, n∆x) = 0 for m∆x, n∆x that lie outside

a finite region, say [−ζ, ζ] in position space, and Γ(j∆p, k∆p) = 0 for j∆p, k∆p that

lie outside a finite region, say [−η, η] in momentum space. As D∆x and D∆p can

always be chosen to be larger than ζ and η, respectively, the above equations for

P∞ can be expressed in integral form as 1

P∞ =

√∫∫ +∞

−∞
|G(x, x′)|2 dx dx′ =

√
Tr(ρ2), (6.52a)

P∞ =

√∫∫ +∞

−∞
|Γ(p, p′)|2 dp dp′ =

√
Tr(ρ2), (6.52b)

1The Riemann integral is strictly defined only for bounded intervals. Therefore, the summation
limN→∞ lim∆x→0

∑+N
n=−N f(n∆x)∆x, where N∆x → ∞, is first identified with the Cauchy prin-

cipal value lima→∞
∫ a

−a
f(x) dx, which is then identified with the improper integral

∫ +∞
−∞ f(x) dx.
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where ρ is normalized such that Tr(ρ) =
∫ +∞
−∞ G(x, x) dx =

∫ +∞
−∞ Γ(p, p) dp = 1.

Thus, using equations (6.52), we can compute P∞ for physical states in the position

and momentum representations.

Another representation of states that is widely employed in continuous-variable

quantum information [203, 204, 205] and optical state tomography [218] is the phase-

space representation in terms of the Wigner functionW (x, p), which is given by [219]

W (x, p) =
1

2πℏ

∫ +∞

−∞
⟨x+ y

2
|ρ̂|x− y

2
⟩e−ipy/ℏ dy, (6.53)

where
∫ +∞
−∞

∫ +∞
−∞ W (x, p) dx dp = 1. Using Equation (6.52a) and Equation (6.53),

one can show that P∞ can be expressed in terms of W (x, p) as

P∞ =

√
2πℏ

∫∫ +∞

−∞
W 2(x, p) dx dp =

√
Tr(ρ2). (6.54)

Thus, the intrinsic coherence P∞ of a physical state ρ can be computed using equa-

tions (6.52) or (6.54), which are all equal to
√

Tr(ρ2).

Example: Gaussian-Schell field

As an illustrative example, we now compute P∞ for a light field whose transverse

spatial profile is described by the two-dimensional version of the Gaussian-Schell

model [220]. Such a field can be represented in the transverse spatial representation

using the state

ρ =

∫ ∫
G(ρ1,ρ2)|ρ1⟩⟨ρ2| dρ1 dρ2, (6.55)

where the spatial cross-correlation function G(ρ1,ρ2) is given by

G(ρ1,ρ2) =
1

2πσ2
s

exp
{
− (ρ1

2 + ρ2
2)

4σ2
s

}
exp

{
− |ρ1 − ρ2|2

2σ2
g

}
. (6.56)

Here we have denoted ρ1 ≡ (x1, y1) and ρ2 ≡ (x2, y2). The quantities σs and σg are

the rms spatial width and rms spatial coherence width of the beam, respectively.

We have normalized ρ so that Tr(ρ) =
∫
G(ρ,ρ) dρ = 1. The intrinsic coherence
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P∞ of ρ is simply the two-dimensional generalization of Equation (6.52a) given by

P∞ =
√

Tr(ρ2) =

√∫ ∫
|G(ρ1,ρ2)|2 dρ1 dρ2. (6.57)

Substituting Equation (6.56) into the above equation and evaluating the integrals,

we obtain

P∞ =
1√

1 + 4σ2
s/σ

2
g

=
1√

1 + 4/q2
. (6.58)

The parameter q ≡ σg/σs is often referred to as the degree of global coherence of

the field (see Section 5.6.4 of Ref. [3]). Here we notice that in the limit q → ∞

corresponding to a perfectly spatially coherent field, we have P∞ = 1, whereas in

the limit q → 0, we have P∞ = 0.

6.4 Summary

We have extended the intrinsic coherence measure PN , defined for N -dimensional

states, to the N → ∞ limit to obtain the corresponding measure P∞ for infinite-

dimensional states. For states in the OAM-angle and photon number represen-

tations, we used the existing Pegg-Barnett formalisms for this purpose, whereas

for states in the position and momentum representations, we explicitly developed a

Pegg-Barnett-type formalism. We have shown that for any normalized physical state

ρ in these representations, the measure P∞ can be computed as P∞ =
√
Tr(ρ2).

We now note that an equivalent measure, termed as the ”overall degree of co-

herence”, had been defined in the context of classical light fields by Bastiaans in

a series of papers in the 1980s [221, 222, 223, 224, 225]. In addition, the closely

related quantity Tr(ρ2), which is often referred to as purity, has also been used ex-

tensively in the field of quantum information [16]. Indeed, studies have discussed

the close relationship between the notions of purity of quantum states and coherence

of partially coherent fields [226, 227].

We expect P∞ to have wide applicability in the fields of optics and quantum in-
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formation. In optical communication protocols that employ superpositions of OAM

states, it would now be possible to quantify the degradation of coherence in long

distance transmission in a basis-invariant manner [202, 112]. In the photon number

representation, P∞ can be relevant for studies on squeezed states [228, 229, 230, 231]

and general Gaussian states [203, 204, 205] for continuous-variable protocols. In the

position and momentum representations, P∞ can be useful for quantifying the effects

of turbulence on the intrinsic spatial coherence of light [206, 207, 208]. In addition,

P∞ can be used to quantify decoherence in open quantum systems [209, 210, 211].



Chapter 7

Conclusions and Discussions

In this thesis, we have presented some experimental and theoretical studies on the

characterization of the correlations of the signal-idler photons produced from para-

metric down-conversion (PDC) and their relationship to the intrinsic correlations of

the pump photon in the angular, polarization, and temporal degrees of freedom.

We first considered the orbital angular momentum (OAM) or angular degree of

freedom of photons. The OAM basis of photons – by virtue of being discrete and

infinite-dimensional – provides a natural platform for preparing and manipulating

high-dimensional quantum states. We focused on the problem of measuring the

OAM spectrum of a beam of photons that is described as an incoherent mixture of

different OAM-carrying modes. The previously existing techniques for measuring

the OAM spectrum suffered from issues such as poor scaling with spectral width,

stringent stability requirements, and too much loss. Furthermore, most techniques

measured only a post-selected part of the true spectrum. We demonstrated that

a Mach-Zender interferometer with the simple-yet-crucial feature of having an odd

and even number of mirrors in the two arms results in the angular coherence function

of the input field being directly encoded in the output interferogram. As a result,

the OAM spectrum of the input field can be obtained directly through an inverse

Fourier transform of the angular coherence function. By performing proof-of-concept

demonstrations with laboratory-synthesized fields with known spectra, we showed

that the interferometer provides a robust and efficient technique for measuring the
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true OAM spectrum of a field in a single-shot acquisition. In the absence of noise,

a single-shot acquisition is sufficient, whereas in the presence of noise, two shots are

required for the purpose.

We then reported our experimental and theoretical characterization of the an-

gular Schmidt spectrum of the entangled two-photon state produced from PDC of

a Gaussian pump. The angular Schmidt spectrum completely characterizes the an-

gular correlations between the signal and idler photons. The existing theoretical

procedures for computing the spectrum were computationally cumbersome and suf-

fered from convergence problems. Also, experimental measurements of the Schmidt

spectrum measured only a post-selected part of the true spectrum or required coin-

cidence detections with stringent alignment conditions or both. We first derived an

analytic formula that is computationally efficient and yields the true Schmidt spec-

trum without any convergence problems. Next, by exploiting the fact that the OAM

spectrum of the one-photon field comprising the signal and idler photons is identical

to the angular Schmidt spectrum, we used the single-shot technique to experimen-

tally measure the true angular Schmidt spectrum without the need for coincidence

detections. We presented a complete characterization of the true Schmidt spectrum

of the signal-idler photons from collinear to non-collinear emission regimes with

excellent agreement with theoretical predictions. In the non-collinear regime, we

have measured the widest-ever spectrum measured so far with an angular Schmidt

number of 233.

We then theoretically investigated how the intrinsic correlations of the pump

photon are transferred through the process of PDC to eventually manifest as entan-

glement in the polarization and temporal degrees of freedom. In the polarization

degree of freedom, we demonstrated that independent of the details of the gen-

eration scheme, the degree of polarization of the pump photon predetermines the

maximum achievable polarization entanglement of two-qubit signal-idler states. In

the temporal degree of freedom, following up on previous studies that considered the

specific cases of a continuous-wave pump and a transform-limited pulsed pump, we
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theoretically demonstrated that even for a completely general pump, the temporal

correlations of the pump photon are entirely transferred to the signal-idler photons.

We further showed that the energy-time entanglement of two-qubit signal-idler states

as quantified by concurrence is bounded by the degree of temporal coherence of the

pump photon.

Lastly, we presented our theoretical formulation of a basis-invariant measure of

coherence for infinite-dimensional states. For two-dimensional states, the degree

of polarization P2 is a well-accepted basis-invariant measure of coherence. Until

recently, although some measures had been proposed, no unique measure that pos-

sesses all the interpretations of P2 was established for higher-dimensional states. As

a result, it was not possible to study the intrinsic correlations of the pump and

signal-idler photons in PDC in the OAM, photon number, position and momentum

degree of freedoms in a basis-invariant manner. Recently, a study demonstrated an

analogous measure PN for finite-N -dimensional states to possess all the interpreta-

tions of the two-dimensional counterpart P2. We used the Pegg-Barnett procedure

to generalize this measure to the N → ∞ limit to quantify the intrinsic coher-

ence of infinite-dimensional states. For states in the OAM and photon number

representations, we used the existing Pegg-Barnett formalisms, whereas for states

in the position and momentum representations, we explicitly constructed a Pegg-

Barnett-type formalism. We showed that for any normalized physical state ρ in

these representations, the intrinsic degree of coherence P∞ of a state ρ is given by

P∞ =
√
Tr(ρ2).

We will now briefly discuss the future outlook of the work presented in this the-

sis. Firstly, we expect that the single-shot OAM spectrum measurement technique –

which applies only to states that are diagonal in the OAM basis – may be generalized

to measure pure and arbitrary mixed states of photons in the OAM basis. In other

words, this work could potentially lead to efficient schemes for high-dimensional

quantum state tomography in the OAM basis. Also, the idea of co-ordinate inver-

sion exploited in the single-shot technique is quite general, and can be adapted to
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measure correlations in other degrees of freedom as well. For instance, a recent study

employed such a co-ordinate inversion to measure the transverse spatial coherence

of photons [123].

Next, we expect our experimental and theoretical characterizations of the angu-

lar Schmidt spectrum from PDC to be relevant for information processing protocols

that employ OAM-entangled states produced from PDC. Our studies could enable

a precise tuning of the dimensionality of the entangled state by varying the differ-

ent physical parameters of the pump field and the crystal medium. Moreover, as

demonstrated by our studies, the single-shot technique can be used to efficiently and

accurately measure such states.

Finally, our work on the propagation of correlations in PDC and the quantifica-

tion of the intrinsic coherence of infinite-dimensional states also opens up interesting

avenues for future research. Our studies on the transfer of correlations in PDC in

the polarization and temporal degrees of freedom contribute to an existing program

that attempts to understand how the intrinsic correlations of the pump photon are

transferred to eventually manifest as nonlocal correlations in PDC. This program

could eventually lead to a physically intuitive picture of entanglement. In addi-

tion, our work on the quantification of intrinsic coherence of infinite-dimensional

states could now enable studies on the transfer of correlations in the OAM-angle,

photon-number and position-momentum degrees of freedom.



Appendix A

Theory of asymmetric OAM

spectrum measurement

In this appendix, we present the theoretical analysis of single-shot technique for

the case of an asymmetric OAM spectrum, i.e, when Sl ̸= S−l. We will describe

two distinct ways in which an asymmetric OAM spectrum can be measured: one

requires two acquisitions for δ = δc and δ = δd, such that δc + δd = π/2; and the

other requires four acquisitions corresponding to δ = 0, π/2, π and 3π/2.

Just as in the case of symmetric spectrum, let us assume that the measured

azimuthal intensity Īδout(ϕ) at the output contains the noise term Iδn(ϕ) in addition

to the signal Iout(ϕ). Thus

Īδout(ϕ) = Iδn(ϕ) + Iout(ϕ)

= Iδn(ϕ) +
k1 + k2
2π

+ γ
√
k1k2[W (2ϕ)e−iδ + c.c.]. (A.1)

A.1 Two-shot method

Now, suppose we have two interferogram measured at two different values of δ, say

at δc and δd. The difference ∆Īout(ϕ) in the intensities of the two interferogram is
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then given by

∆Īout(ϕ) = Īδcout(ϕ)− Īδdout(ϕ)

= ∆In(ϕ) + γ
√
k1k2[W (2ϕ)e−iδc +W ∗(2ϕ)eiδc

−W (2ϕ)e−iδd −W ∗(2ϕ)eiδd ], (A.2)

where ∆In(ϕ) = Iδcn (ϕ)−Iδdn (ϕ) is the difference in the noise intensities. Unlike in the

case of symmetric spectrum, ∆Īout(ϕ) is not proportional to the angular coherence

function W (2ϕ). Multiplying each side of Equation (A.2) by ei2lϕ and using the

angular Wiener-Khintchine relation Sl =
∫ π

−π
W (2ϕ)ei2lϕd(2ϕ), we obtain

∫ π

−π

∆Īout(ϕ)e
i2lϕd(2ϕ) =

∫ π

−π

∆In(ϕ)(ϕ)e
i2lϕd(2ϕ)

+ γ
√
k1k2[Sle

−iδc + S−le
iδc − Sle

−iδd − S−le
iδd ]. (A.3)

Now, multiplying each side of Equation (A.2) by e−i2lϕ and using the angular Wiener-

Khintchine relation Sl =
∫ π

−π
W (2ϕ)ei2lϕd(2ϕ), we obtain

∫ π

−π

∆Īout(ϕ)e
−i2lϕd(2ϕ) =

∫ π

−π

∆In(ϕ)(ϕ)e
−i2lϕd(2ϕ)

+ γ
√
k1k2[S−le

−iδc + Sle
iδc − S−le

−iδd − Sle
iδd ]. (A.4)

Adding Equations (A.3) and (A.4), we get

∫ π

−π

∆Īout(ϕ) cos(2lϕ)d(2ϕ) =

∫ π

−π

∆In(ϕ) cos(2lϕ)d(2ϕ)

+ γ
√
k1k2(Sl + S−l)(cos δc − cos δd). (A.5)

Subtracting Equation (A.4) from Equation (A.3), we get

∫ π

−π

∆Īout(ϕ) sin(2lϕ)d(2ϕ) =

∫ π

−π

∆In(ϕ) sin(2lϕ)d(2ϕ)

− γ
√
k1k2(Sl − S−l)(sin δc − sin δd). (A.6)
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Now the question is how should one define the spectrum so that the defined spectrum

becomes proportional to the true spectrum. Upon inspection we find that for the

non-symmetric case it is not possible to define the spectrum the way we did it in

the case of symmetric spectrum. Nevertheless, in the special situation in which

δc + δd = π/2, it is possible to define the measured spectrum just like we did it in

the symmetric case. Let us consider the situation when δc = θ and δd = π/2 − θ

such that δc+ δd = π/2. Equations (A.5) and (A.6) for this situation can be written

as

∫ π

−π

∆Īout(ϕ) cos(2lϕ)d(2ϕ) =

∫ π

−π

∆In(ϕ) cos(2lϕ)d(2ϕ)

+ γ
√
k1k2(Sl + S−l)(cos θ − sin θ). (A.7)

and

∫ π

−π

∆Īout(ϕ) sin(2lϕ)d(2ϕ) =

∫ π

−π

∆In(ϕ) sin(2lϕ)d(2ϕ)

+ γ
√
k1k2(Sl − S−l)(cos θ − sin θ). (A.8)

Adding Equations (A.7) and (A.8), we get

∫ π

−π

∆Īout(ϕ) [cos(2lϕ) + sin(2lϕ)] d(2ϕ)

=

∫ π

−π

∆In(ϕ) [cos(2lϕ) + sin(2lϕ)] d(2ϕ)

+ 2γ
√
k1k2(cos θ − sin θ)Sl. (A.9)

So, now if we define the measured spectrum S̄l to be

S̄l ≡
∫ π

−π

∆Īout(ϕ) [cos(2lϕ) + sin(2lϕ)] d(2ϕ)
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we get,

S̄l =

∫ π

−π

∆In(ϕ) [cos(2lϕ) + sin(2lϕ)] dϕ

+ 2γ
√
k1k2(cos θ − sin θ)Sl. (A.10)

In situations in which the noise neither has any explicit functional dependence on δ

nor has any shot-to-shot variation, we have ∆In(ϕ) = 0. Thus the defined spectrum

S̄l becomes proportional to the true spectrum Sl. We see that just as in the case

of symmetric spectrum, one does not have to know the exact values of k1, k2, γ and

θ. The only thing different in this case is that one has to take the two shots such

δc + δd = π/2.

A.2 Four-shot method

Note that equation (A.1) can equivalently be written as

Īδout(ϕ) = Iδn(ϕ) + Iout(ϕ)

= Iδn(ϕ) +
k1 + k2
2π

+ 2γ
√
k1k2Re

[
W (2ϕ)e−iδ

]
. (A.11)

Consider two interferograms measured at two different values of δ, say at δ = 0 and

δ = π. The difference ∆Ī
(r)
out(ϕ) between the intensities of the two interferograms is

given by

∆Ī
(r)
out(ϕ) = Ī0out(ϕ)− Īπout(ϕ)

= ∆I(r)n (ϕ) + 4γ
√
k1k2Re [W (2ϕ)] , (A.12)

where ∆I
(r)
n (ϕ) is the difference between the noise intensities I0n(ϕ) and Iπn (ϕ) for

the two shots.
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Similarly, consider two interferograms measured for δ = π/2 and δ = 3π/2. The

difference ∆Ī
(i)
out(ϕ) between the intensities of the two interferograms is given by

∆Ī
(i)
out(ϕ) = Ī

π/2
out (ϕ)− Ī

3π/2
out (ϕ)

= ∆I(i)n (ϕ)− 4γ
√
k1k2Im [W (2ϕ)] , (A.13)

where ∆I
(i)
n (ϕ) is the difference between noise intensities I

π/2
n (ϕ) and I

3π/2
n (ϕ) for

the two shots. If both the difference noise intensities, namely ∆Ī
(r)
n (ϕ) and ∆Ī

(i)
n (ϕ)

are identically zero, then using Equation (A.12) and Equation (A.13) we obtain

∆Ī
(r)
out(ϕ)− i∆Ī

(i)
out(ϕ) = 4γ

√
k1k2 [W (2ϕ)] . (A.14)

If we now define the measured spectrum S̄l as

S̄l =

∫ +π

−π

[
∆Ī

(r)
out(ϕ)− i∆Ī

(i)
out(ϕ)

]
ei2lϕ dϕ, (A.15)

then from Equation(A.14) we find

S̄l = 4γ
√
k1k2Sl, (A.16)

i.e, the measured spectrum is the true OAM spectrum of the field upto an overall

scaling constant. In this way, we can measure an asymmetric spectrum using the four

interferograms corresponding to δ = 0, π/2, π and 3π/2. Again, it is not necessary

to know the precise values of k1, k2 and γ, which makes the technique very robust.

Finally we note that while the two-shot method is more efficient, it is exper-

imentally difficult to acquire two interferograms precisely at δc and δd such that

δc + δd = π/2. On the other hand, it is easier to acquire interferograms at the four

values of δ, namely 0, π/2, π, and 3π/2 using precision automated translation stages

or through geometric phases using waveplates.



Appendix B

Calculation of pump spectral

amplitude at distance d from

beam waist

In this appendix, we will derive the expression for the momentum-space pump spec-

tral amplitude at a distance d from the beam waist. The momentum-space spectral

amplitude V (qp; z = −d) of the Gaussian pump field at the beam waist location

z = −d takes the form [119],

V (qp, z = −d) = C exp

(
−
|qp|2w2

p

4

)
, (B.1)

where C is a constant and wp is the beam waist size. The position-space transverse

spatial amplitude profile Ṽ (ρ; z = −d) of the field is given by the Fourier transform

relation

Ṽ (ρ; z = −d) =
∫∫

V (qp, z = −d) e−iqp·ρ d2qp. (B.2)

The field propagates in the longitudinal co-ordinate via the Fresnel diffraction inte-

gral as [232],

Ṽ (ρ; z = 0) =
eikpd

iλpd

∫∫
Ṽ (ρ′; z = −d) exp

{
ik

2d
|ρ− ρ′|2

}
d2ρ′
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If we denote the two-dimensional convolution operation by “ ∗ ”, then the above

equation is equivalent to

Ṽ (ρ; z = 0) = Ṽ (ρ; z = −d) ∗ h̃(ρ; d), (B.3)

where

h̃(ρ; d) =
eikpd

iλpd
exp

{
ikp|ρ|2

2d

}
Using the convolution theorem for Fourier transforms [233], it follows that

V (qp, z = 0) = V (qp, z = −d)× h(qp; d), (B.4)

where h(qp; d) is the Fourier transform of h̃(ρ; d), i.e,

h(qp; d) =

∫∫
h(ρ; d) eiqp·ρ d2ρ

=
eikpd

iλpd

∫∫
e

ik|ρ|2
2d eiqp·ρ d2ρ

=
eikpd

iλpd

2πid

kp
e
− id|qp|2

2kp

=
2π

kpλp
e
i
(
kp−

|qp|2

2kp

)
d

(B.5)

Now note that using the paraxial condition |qp| ≪ kp on kpz =
√
k2p − |qp|2, we get

kpz = kp − |qp|2
2kp

. Using this in Equation (B.5), we get

h(qp; d) =
2π

kpλp
eikpzd. (B.6)

Substituting equations (B.1) and (B.6) into Equation (B.4) and absorbing constants

into C, we finally obtain

V (qp, z = 0) = C exp

(
−
|qp|2w2

p

4

)
eikpzd. (B.7)
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